ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Displacements observed for the Landers earthquake indicate that the depth of the bottom of the rupture is shallower towards the northern end. Displacements were dominantly symmetric and the rupture extended farther south on the Johnson Valley fault than has been mapped on the basis of surface ground offsets. The combined geodetic moment for the Landers and Big Bear earthquakes agrees well with teleseismic estimates.
    Keywords: GEOPHYSICS
    Type: Nature (ISSN 0028-0836); 361; 6410; p. 340-342.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: A permanent Global Positioning System (GPS) receiver at Casa Diablo Hot Springs, Long Valley Caldera, California was installed in January, 1993, and has operated almost continuously since then. The data have been transmitted daily to the Jet Propulsion Laboratory (JPL) for routine analysis with data from the Fiducial Laboratories for an International Natural sciences Network (FLINN) by the JPL FLINN analysis center. Results from these analyses have been used to interpret the on going deformation at Long Valley, with data excluded from periods when the antenna was covered under 2.5 meters of snow and from some periods when Anti Spoofing was enforced on the GPS signal. The remaining time series suggests that uplift of the resurgent dome of Long Valley Caldera during 1993 has been 2.5 +/- 1.1 cm/yr and horizontal motion has been 3.0 +/- 0.7 cm/yr at S53W in a no-net-rotation global reference frame, or 1.5 +/- 0.7 cm/yr at S14W relative to the Sierra Nevada block. These rates are consistent with uplift predicted from frequent horizontal strain measurements. Spectral analysis of the observations suggests that tidal forcing of the magma chamber is not a source of the variability in the 3 dimensional station location. These results suggest that remotely operated, continuously recording GPS receivers could prove to be a reliable tool for volcanic monitoring throughout the world.
    Keywords: GEOPHYSICS
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 195-198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Using 21 days of GPS data from 21 globally distributed receivers operating during early 1991, a 7-parameter transformation between a GPS free-network solution and coordinates of 12 stations listed in the International Terrestrial Reference Frame (ITRF) is solved. Standard errors of GPS coordinates are derived by applying an orthogonal projection operator to the free-network covariance. The weighted rms difference between 33 transformed GPS and ITRF coordinates is 12 mm in the Northern Hemisphere. Best results are obtained by mapping ITRF coordinates to the epoch of this experiment assuming no vertical site motions. Fixing selected sites in the GPS solution to ITRF '90 does not improve the agreement. It is concluded that the use of fiducial constraints is unnecessary for global networks.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 9, Ma; 853-856
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: Geodetic measurements with Rogue GPS receivers from sites in the California Permanent GPS geodetic Array (PGGA) have been analyzed using the GIPSY orbit-determination and baseline-estimation software. Based on an unbiased selection of 23 daily measurements spanning 8 months, the LF contributions to the long-term repeatabilities of baseline measurements are approximately 5, 3, and 8 mm for the east, north, and vertical components. Short-term contributions to the long-term repeatabilities were evaluated by examining data from the week of October 21, 1990, which showed the lowest short-term scatter. For this week, daily repeatabilities of 2-3 mm in the horizontal and 4 mm in the vertical have been achieved for the 172-km JPL-Pinyon baseline, consistent with carrier phase date noise of about 6 mm. High quality (less than about 5 mm) repeatabilities have been achieved for all components of the other baselines as well.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 18; 1135-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: The Magnetospheric Imaging Constellation (MagIC) is a NASA space science concept to study the Earth's Magnetosphere. The concept proposes to apply tomography techniques using an array of spacecraft to obtain three dimensional images of the Earth's magnetosphere. This paper presents an optimal orbit design to ensure that the constellation is in the desired region of the magnetosphere for maximum time. The solution is found using a steepest descent optimization algorithm that takes into account perturbations from the non-spherical Earth, drag, Sun, Moon and other significant bodies. The solution also satisfies constraints on maximum eclipse duration and geometry constraints to allow an adequate GPS navigation solution. We present three solutions depending upon the epoch of the primary science: vernal equinox, summer solstice, and a third midway between the vernal equinox and summer solstice. Orbit insertion is also considered. All spacecraft are assumed to be launched on a single vehicle into a nominal orbit and the (Delta)V's to achieve the nominal orbit are presented. After insertion into the nominal orbit, each spacecraft undergoes a phasing maneuver to place it in the appropriate position with respect to the rest of the constellation. We present a minimum fuel approach to maneuver each spacecraft from the nominal orbit into the desired final orbit.
    Keywords: Astrodynamics
    Type: 16th International Symposium on Space Flight Dynamics; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This document is presentation in viewgraph form, which outlines the methods of determining spacecraft attitude. The presentation reviews several parameterizations relating to spacecraft attitude, such as Euler's Theorem, Rodriques parameters, and Euler-Rodriques parameters or Quaternion. Onboard attitude determination is the norm, using either single frame or filtering methods. The presentation reviews several mathematical representations of attitude. The mechanisms for determining attitude on board the Hubble Space Telescope, the Tropical Rainfall and Measuring Mission and the Solar Anomalous and Magnetospheric Particle Explorer are reviewed. Wahba's problem, Procrustes Problem, and some solutions are also summarized.
    Keywords: Astrodynamics
    Type: Nov 07, 2000; Ithaca, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: An analysis of GPS data over the period 1987-91 confirms geologic and seismic evidence that the Santa Barbara Channel is a complicated actively deforming region. The data indicate north-south compression in the eastern channel, with little deformation in the west. Rotation may also be an important deformation mechanism. An analysis of strain rate variation over periods of 4.5, 17, and 100 yr suggests that deformation is nonuniform.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 14 J; 1491-149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Over the past four years, NASA's Goddard Space Flight Center has built and tested the Triana observatory, which will be the first Earth observing science satellite to take advantage of the unique perspective offered by a Lissajous orbit about the first Earth-Sun Lagrange Point (L1). Triana was originally meant to fly on the U.S. Space Transportation System (a.k.a. the Space Shuttle), but complications with the shuttle manifest have forced Triana into a "wait and see" attitude. The observatory is currently being stored at NASA's Goddard Space Flight Center, where it waits for an appropriate launch opportunity to materialize. To that end, several possible alternatives have been considered, including variations on the nominal shuttle deployment scenario, a high inclination Delta-type launch from Vandenberg Air Force Base, a Tsyklon class vehicle launched from Baikonur, Kazakhstan, and a ride on a French Ariane vehicle out of French Guiana into a somewhat arbitrary geostationary transfer orbit (GTO). This paper chronicles and outlines the pros and cons of how each of these opportunities could be used to send Triana on its way to L1.
    Keywords: Astrodynamics
    Type: International Conference on Libration Point Orbits and Applications; Jun 10, 2002 - Jun 14, 2002; Gerona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more important, that the receiver clock can be synchronized to GPS time. This is extremely important for real-time and post-processed orbit determination, where removal of receiver clock bias from the data time tags is needed, for time-tagging of science observations. Current analysis suggests that the inability to generate point solutions has allowed the TANS Vector clock bias to drift freely, being perhaps as large as 5-7 seconds by October, 2001, thus causing up to 50 km of along-track orbit error. The data collected in May, 2002 while in three-axis stabilized mode should provide a significant improvement in the orbit determination results.
    Keywords: Astrodynamics
    Type: AIAA GN&C Conference; Aug 05, 2002 - Aug 08, 2002; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The filter/smoother combination provides the most accurate means of trajectory reconstruction. Not all parameters of interest can be determined from a given flight test data set: need to check observability. A variety of ground & onboard sensors may be used; trend appears to be toward increasing reliance on onboard GPS.
    Keywords: Astrodynamics
    Type: AIAA Aerodynamic Decelerator Systems Conference; May 21, 2001; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...