ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-12-08
    Description: A novel bacteriophage lambda vector system was used to express in Escherichia coli a combinatorial library of Fab fragments of the mouse antibody repertoire. The system allows rapid and easy identification of monoclonal Fab fragments in a form suitable for genetic manipulation. It was possible to generate, in 2 weeks, large numbers of monoclonal Fab fragments against a transition state analog hapten. The methods described may supersede present-day hybridoma technology and facilitate the production of catalytic and other antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huse, W D -- Sastry, L -- Iverson, S A -- Kang, A S -- Alting-Mees, M -- Burton, D R -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1275-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2531466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*biosynthesis/genetics ; Antibody Specificity ; Antigen-Antibody Reactions ; Bacteriophage lambda/*genetics ; Base Sequence ; Cloning, Molecular/methods ; Escherichia coli/genetics ; Gene Amplification ; Gene Library ; *Genetic Vectors ; Hemocyanin/analogs & derivatives/immunology ; Immunoglobulin Fab Fragments/biosynthesis ; Immunoglobulin Fragments/*biosynthesis/genetics ; Mice ; Molecular Sequence Data ; Organophosphorus Compounds/immunology ; Recombinant Proteins/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-28
    Description: The specific hydrolysis of unactivated esters bearing an R or S enantiomeric alcohol has been achieved by two separate classes of catalytic antibodies induced to bind either the R or S substrates. The antibodies exhibit rate accelerations (10(3) to 10(5] above background hydrolysis that, coupled with their antipodal specificity, provide a novel set of reagents for use in synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Apr 28;244(4903):437-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2717936" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies, Monoclonal/immunology ; Antibody Specificity ; Antigens/immunology ; Benzyl Alcohols/metabolism ; *Catalysis ; Esters/metabolism ; Haptens ; Hemocyanin/immunology ; Hydrolysis ; Immunization ; Kinetics ; Lipase/*metabolism ; Mice ; Mice, Inbred A ; Molecular Structure ; Organophosphonates/immunology ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-05-03
    Description: A transition state analogue was used to produce a mouse antibody that catalyzes transesterification in water. The antibody behaves as a highly efficient catalyst with a covalent intermediate and the characteristic of induced fit. While some features of the catalytic pathway were programmed when the hapten was designed and reflect favorable substrate-antibody interactions, other features are a manifestation of the chemical potential of antibody diversity. The fact that antibodies recapitulate mechanisms and pathways previously thought to be a characteristic of highly evolved enzymes suggests that once an appropriate binding cavity is achieved, reaction pathways commensurate with the intrinsic chemical potential of proteins ensue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wirsching, P -- Ashley, J A -- Benkovic, S J -- Janda, K D -- Lerner, R A -- GM43858-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):680-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2024120" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Alcohols/metabolism ; Animals ; Antibodies, Monoclonal/immunology/*metabolism ; Antibody Specificity ; Binding Sites, Antibody ; *Catalysis ; Enzymes/metabolism ; Esterification ; Haptens ; Kinetics ; Mice ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-03
    Description: Immunochemistry has historically focused on the nature of antigenicity and antibody-antigen recognition. However, in the last 5 years, the field of immunochemistry has taken a new direction. With the aid of mechanistic and synthetic chemistry, the vast network of molecules and cells of the immune system has been tapped to produce antibodies with a new function--catalytic antibodies. Because antibodies can be generated that selectively bind almost any molecule of interest, this new technology offers the potential to tailor-make highly selective catalysts for applications in biology, chemistry, and medicine. In addition, catalytic antibodies provide fundamental insight into important aspects of biological catalysis, including the importance of transition-state stabilization, proximity effects, general acid and base catalysts, electrophilic and nucleophilic catalysis, and strain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lerner, R A -- Benkovic, S J -- Schultz, P G -- New York, N.Y. -- Science. 1991 May 3;252(5006):659-67.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2024118" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibodies/chemistry/immunology/metabolism ; Antibodies, Monoclonal/immunology/metabolism ; Antibody Specificity ; Antigens/chemistry/immunology/metabolism ; Binding Sites, Antibody ; *Catalysis ; Chemical Phenomena ; Chemistry ; Haptens ; Hydrogen-Ion Concentration ; Hydrolysis ; Metals ; Molecular Conformation ; Recombinant Proteins ; Thermodynamics ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-12-15
    Description: Antibodies that catalyze the aldol reaction, a basic carbon-carbon bond-forming reaction, have been generated. The mechanism for antibody catalysis of this reaction mimics that used by natural class I aldolase enzymes. Immunization with a reactive compound covalently trapped a Lys residue in the binding pocket of the antibody by formation of a stable vinylogous amide. The reaction mechanism for the formation of the covalent antibody-hapten complex was recruited to catalyze the aldol reaction. The antibodies use the epsilon-amino group of Lys to form an enamine with ketone substrates and use this enamine as a nascent carbon nucleophile to attack the second substrate, an aldehyde, to form a new carbon-carbon bond. The antibodies control the diastereofacial selectivity of the reaction in both Cram-Felkin and anti-Cram-Felkin directions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, J -- Lerner, R A -- Barbas, C F 3rd -- CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1797-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525368" target="_blank"〉PubMed〈/a〉
    Keywords: Acetone/chemistry ; Aldehydes/chemistry ; Animals ; Antibodies, Catalytic/biosynthesis/*chemistry/immunology ; Antibodies, Monoclonal/chemistry/immunology ; Antibody Specificity ; Catalysis ; Fructose-Bisphosphate Aldolase/*chemistry/immunology ; Haptens/chemistry/immunology ; Lysine/chemistry ; Mice ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-09-02
    Description: Catalysis of amide bond hydrolysis is of singular importance in enzymology. An antibody was induced to an analog of a high-energy intermediate anticipated along the reaction coordinate of amide hydrolysis. This antibody is an amidase with high specificity and a large rate enhancement (250,000) relative to the uncatalyzed reaction. This reaction represents the kinetically most difficult hydrolysis reaction yet catalyzed by an antibody.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, K D -- Schloeder, D -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1188-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3413482" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/metabolism ; Animals ; Antibodies, Monoclonal/biosynthesis/*physiology ; Antibody Specificity ; Antigens/immunology ; *Catalysis ; Chemical Phenomena ; Chemistry ; Hemocyanin/analogs & derivatives/immunology ; Hydrolysis ; Immunization ; Kinetics ; Mice ; Organophosphorus Compounds/immunology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...