ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • pyrolysis mass spectrometry  (2)
  • Anaplerotic metabolism  (1)
  • 1
    ISSN: 1572-9699
    Keywords: deep sea ; mycolata ; polyphasic taxonomy ; pyrolysis mass spectrometry ; Rhodococcus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A large number of mycolate actinomycetes have been recovered from deep-sea sediments in the NW Pacific Ocean using selective isolation methods. The isolates were putatively assigned to the genus Rhodococcus on the basis of colony characteristics and mycolic acid profiles. The diversity among these isolates and their relationship to type strains of Rhodococcus and other mycolate taxa were assessed by Curie point pyrolysis mass spectrometry (PyMS). Three major (A, C, D) and two minor (B, E) groups were defined by PyMS. Cluster A was a large group of isolates recovered from sediment in the Izu Bonin Trench (2679 m); Cluster C comprised isolates from both the Izu Bonin Trench (6390 and 6499 m) and from the Japan Trench (4418, 6048 and 6455 m). These Cluster C isolates showed close similarity to Dietzia maris and this was subsequently confirmed using molecular methods. Cluster D contained isolates recovered from a sediment taken from a depth of 1168m in Sagami Bay and were identified as members of the terrestrial species Rhodococcus luteus. Clusters B and E had close affinities with members of the genera Gordonia and Mycobacterium. The presence of Thermoactinomyces in certain of the deep-sea sediments studied was indicative of the movement of terrestrial material into the ocean depths. 16S ribosomal RNA gene sequence analyses produced excellent definition of most genera of the mycolata, and indicated that the among the deep sea isolates (1) were novel species of Corynebacterium, Gordonia and Mycobacterium, and (2) a Sea of Japan isolate the phylogenetic depth of which suggests the possibility of a new genus. Polyphasic taxonomic analysis revealed considerable diversity among the deep sea rhodococci and evidence for recently diverged species or DNA groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 128 (1981), S. 282-287 
    ISSN: 1432-072X
    Keywords: Fungal metabolism ; Continuous cultures ; Anaplerotic metabolism ; Biomass ; Aspergillus nidulans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Anaplerotic fixation of carbon dioxide by the fungus Aspergillus nidulans when grown under carbon-limited conditions was mediated by pyruvate carboxylase and a phosphoenol pyruvate (PEP)-metabolising enzyme which has been tentatively designated as PEP carboxylase. The activities of both enzymes were growth rate dependent and measurements of H14CO3 incorporation by growing mycelium indicated that they were responsible for almost all the assimilated carbon dioxide. In carbon-limited chemostats, the maximum rate of bicarbonate assimilation occurred at a dilution rate of 0.11 h−1, equivalent to 1/2 μmax. The affinity of the pyruvate carboxylase for bicarbonate was twice that of the PEP carboxylase under the conditons of growth used. The effect of changing the bicarbonate concentration in carbon-limited chemostats was substantial: increasing the HCO 3 − concentration over the range 0.7–2.8 mM enhanced biomass synthesis by 22%. Over-shoots in bicarbonate assimilation and carboxylase activity occurred when steady state chemostat cultures were subjected to a step down in dilution rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9699
    Keywords: actinomycetes ; deep-sea ; dereplication ; pyrolysis mass spectrometry ; screening
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A continual need in natural product discovery is dereplication, that is the ability to exclude previously tested microorganisms from screening programmes. Whole-cell fingerprinting techniques offer an ideal solution to this problem because of their rapidity and reproducibility, dependence on small samples, and automation. One such technique, Curie-point pyrolysis mass spectrometry (PyMS), has been deployed for the characterisation of a unique collection of actinomycetes recovered from Pacific Ocean sediments approximately 2000 to 6500 m below sea level. This paper addresses the question: to what extent are pyrogroups, defined on the basis of PyMS fingerprinting, related to classifications derived from more conventional microbial systematics? A collection of 44 randomly chosen deep-sea rhodococci were coded and subjected to a double-blind PyMS and numerical taxonomic (NT) analysis; the latter sorted the strains into clusters (taxospecies) using large sets of equally weighted phenotypic data. At the end of the experiment the codes were disclosed and the NT classification shown to generate 6 homogeneous clusters corresponding to different deep-sea sites. The matching of these clusters with the resulting pyrogroups was very high with an overall congruence of nearly 98%. Thus, PyMS characterisation is directly ascribable to the phenotypic variation being sought for biotechnology screens. Moreover, the exquisite discriminatory power of PyMS readily revealed infraspecific diversity in these industrially important bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...