ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino acids  (2)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1573-5036
    Keywords: Amino acids ; Proteins ; Wheat ; Salinity ; Soil types
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of four lysimeter soil series under three salinity levels were evaluated for grain yield, wt/1000 seeds, protein, and amino acids in Mexican dwarf wheat (Triticum aestivum L. var. Cajeme 71). The soil series consisted of: Holtville clay loam, Greenfield sandy loam, San Emigdio sandy loam, and Altamont clay loam. The irrigation water salinity levels were designated: low −2.2 mmho, medium −4.2 mmho, and high −7.1 mmho. No significant differences were found in the amount of grain harvested or wt/1000 seeds in the 1976 crop produced on the differential soil series. The yield of the 1977 crop was significantly affected by the soil types. Effects of soil type on the protein amino acids in the grain in both years were similar. Significantly higher protein amino acid levels of histidine, arginine, aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, and phenylalanine were found in the grain grown on Altamont clay loam soil than the other types. The free amino acids in grain from the 1976 and 1977 crops were similarly affected by the soil types, except that the quantitative values of the free amino acids were substantially lower in 1977 than in 1976. The free amino acids significantly influenced by soil types were tryptophane, lysine, arginine, aspartic acid, threonine, serine, glycine, alanine, valine, isoleucine, tyrosine, and phenylalanine. In both years' crops, the sum of the free amino acid fractions was significantly higher in the grain produced on the Altamont soil than on the other soils. Salinity level in the irrigation water did not affect the 1976 crop yield or wt/1000 seeds. Although yields of the 1977 crop were significantly reduced by salinity, the wt/1000 seeds was not. The sum of protein amino acids was significantly higher in the 1976 and 1977 grain crops irrigated with high salinity water than in low salinity irrigated crops. An increased salinity irrigation water significantly reduced the sum of free amino acid fractions in the 1976 grain crop. Since some of the free amino acids in the 1977 grain crop increased while the others decreased due to the salinity level in the irrigation water, the sum of the free amino acid fractions was not significantly influenced. Significant interactions were found between soil types and salinity levels on free arginine, threonine, serine, glutamic acid, and alanine, and also on the sum of the free amino acids in the 1976 wheat grain. In the 1977 wheat grain, there were significant interactions between soil types and salinity levels on the free glutamic acid, valine, leucine, tyrosine, and phenylalanine, and on protein serine, glutamic acid, glycine, alanine, and the sum of the protein amino acids. The amounts of essential amino acids expressed as mg of amino acid/g of protein were not affected by the soil types or salinity levels. With the exception of lysine, and possibly threonine and methionine plus cystine, the essential amino acids were present in the grain at concentrations equal to or greater than recommended by WHO and FAO.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Amino acids ; Cowpea ; Proteins ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary This study was undertaken to evaluate water stress effects during vegetative, flowering, and podfilling stages of cowpea plants (Vigna unguiculata L.) grown under natural field conditions in southern California on seed yield and protein and free amino acid content of the cowpea seeds. The lowest concentration of N was found in the seeds of the control treatment plants while the seed yield from these treatments was the highest as compared with the N concentration and yield of seeds from plants subjected to water stress during flowering and podfilling stages. The concentration of N in the seeds was inversely related to the seed dry weight yield. Protein arginine,-threonine,-serine,-cystine,-valine,-methionine, and-isoleucine were significantly affected by water stress at the three growth stages. There was no consistent pattern in the effect of water stress on the individual amino acids. The sum of protein amino acids in the cowpea seeds was not significantly influenced by the various treatments since some of the protein amino acids increased and others decreased producing an averaging effect on the figures comprising the sums of the amino acids. Water stress during the flowering and pod-filling stages increased the free amino acid pool, and at the same time, inhibited incorporation of the amino acids into the protein chain-thus lowering the protein amino acid fraction simultaneously. With the exception of methionine plus cystine, the essential amino acids in the seeds were present at concentrations equal to or greater than recommended by the World Health Organization and FAO. It is of particular importance to note that the concentration of lysine in the cowpeas was substantially higher than that found in wheat grain. It is also important to note that the amount of essential amino acids per gram of protein was not measurably affected by the water stress treatments during any of the growth stages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...