ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Arctic soil ; Allelopathy ; Microbial immobilization ; Plant-microbe interactions ; Soil labile carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We measured partitioning of N and P uptake between soil microorganisms and potted Festuca vivipara in soil from a subarctic heath in response to factorial addition of three levels of labile carbon (glucose) combined with two levels of inorganic N and P. The glucose was added to either non-sterilized or sterilized (autoclaved) soils in quantities which were within the range of reported, naturally occurring amounts of C released periodically from the plant canopy. The aims were, firstly, to examine whether the glucose stimulated microbial nutrient uptake to the extent of reducing plant nutrient uptake. This is expected in nutrient-deficient soils if microbes and plants compete for the same nutrients. Secondly, we wanted to test our earlier␣interpretation that growth reduction observed in graminoids after addition of leaf extracts could be caused directly by labile carbon addition, rather than by phytotoxins in the extracts. Addition of high amounts of N did not affect the microbial N pool, whereas high amounts of added P significantly increased the microbial P pool, indicating a luxury P uptake in the microbes. Both plant N and in particular P uptake increased strongly in response to soil sterilization and to addition of extra N or P. The increased␣uptake led to enhanced plant growth when both elements were applied in high amounts, but only led to increased tissue concentrations without growth responses when the nutrients were added separately. Glucose had strong and contrasting effects on plant and microbial N and P uptake. Microbial N and P uptake increased, soil inorganic N and P concentrations were reduced and plant N and P uptake declined when glucose was added. The responses were dose-dependent within the range of 0–450 μg C g−1 soil added to the non-sterilized soil. The opposite responses of plants and microbes showed that plant acquisition of limiting nutrients is dependent on release of nutrients from the soil microbes, which is under strong regulation by the availability and microbial uptake of labile C. Hence, we conclude, firstly, that the microbial populations can compete efficiently with plants for nutrients to an extent of affecting plant growth when the microbial access to labile carbon is high in nutrient deficient soils. We also conclude that reduced growth of plants after addition of leaf extracts to soil can be caused by carbon-induced shifts in nutrient partitioning between plants and microbes, and not necessarily by phytotoxins added with the extracts as suggested by some experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Arctic/alpine soils ; Benomyl ; Microbial C, N, P ; Nutrient immobilization ; Plant nutrient uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The soil microbial carbon (C), nitrogen (N) and phosphorus (P) pools were quantified in the organic horizon of soils from an arctic/alpine low-altitude heath and a high-altitude fellfield by the fumigation-extraction method before and after factorial addition of sugar, NPK fertilizer and benomyl, a fungicide. In unamended soil, microbial C, N and P made up 3.3–3.6%, 6.1–7.3% and 34.7% of the total soil C, N and P content, respectively. The inorganic extractable N pool was below 0.1% and the inorganic extractable P content slightly less than 1% of the total soil pool sizes. Benomyl addition in spring and summer did not affect microbial C or nutrient content analysed in the autumn. Sugar amendments increased microbial C by 15 and 37% in the two soils, respectively, but did not affect the microbial nutrient content, whereas inorganic N and P either declined significantly or tended to decline. The increased microbial C indicates that the microbial biomass also increased but without a proportional enhancement of N and P uptake. NPK addition did not affect the amount of microbial C but almost doubled the microbial N pool and more than doubled the P pool. A separate study has shown that CO2 evolution increased by more than 50% after sugar amendment and by about 30% after NPK and NK additions to one of the soils. Hence, the microbial biomass did not increase in response to NPK addition, but the microbes immobilized large amounts of the added nutrients and, judging by the increased CO2 evolution, their activity increased. We conclude: (1) that microbial biomass production in these soils is stimulated by labile carbon and that the microbial activity is stimulated by both labile C and by nutrients (N); (2) that the microbial biomass is a strong sink for nutrients and that the microbial community probably can withdraw substantial amounts of nutrients from the inorganic, plant-available pool, at least periodically; (3) that temporary declines in microbial populations are likely to release a flush of inorganic nutrients to the soil, particularly P of which the microbial biomass contained more than one third of the total soil pool; and (4) that the mobilization-immobilization cycles of nutrients coupled to the population dynamics of soil organisms can be a significant regulating factor for the nutrient supply to the primary producers, which are usually strongly nutrient-limited in arctic ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Allelopathy ; Betula pubescens ssp ; tortuosa ; Cassiope tetragona ; Empetrum hermaphroditum ; Plant-microbe competition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous research has shown that plant extracts, e.g. from boreal dwarf shrubs and trees, can cause reduced growth of neighbouring plants: an effect known as allelopathy. To examine whether arctic and subarctic plants could also be affected by leaching of phytochemicals, we added extracts from the commonly occurring arctic dwarf shrubs Cassiope tetragona and Empetrum hermaphroditum, and from mountain birch, Betula pubescens ssp. tortuosa to three graminoid species, Carex bigelowii, Festuca vivipara and Luzula arcuata, grown in previously sterilized or non-sterilized arctic soils. The graminoids in non-sterilized soil grew more slowly than those in sterilized soil. Excised roots of the plants in non-sterilized soil had higher uptake rate of labelled P than those in sterilized soil, demonstrating larger nutrient deficiency. The difference in growth rate was probably caused by higher nutrient availability for plants in soils in which the microbial biomass was killed after soil sterilization. The dwarf shrub extracts contained low amounts of inorganic N and P and medium high amounts of carbohydrates. Betula extracts contained somewhat higher levels of N and much higher levels of P and carbohydrates. Addition of leaf extracts to the strongly nutrient limited graminoids in non-sterilized soil tended to reduce growth, whereas in the less nutrient limited sterilized soil it caused strong growth decline. Furthermore, the N and P uptake by excised roots of plants grown in both types of soil was high if extracts from the dwarf shrubs (with low P and N concentrations) had been added, whereas the P uptake declined but the N uptake increased after addition of the P-rich Betula extract. In contrast to the adverse extract effects on plants, soil microbial respiration and soil fungal biomass (ergosterol) was generally stimulated, most strongly after addition of the Betula extract. Although we cannot exclude the possibility that the reduced plant growth and the concomitant stimulation of microbial activity were caused by phytochemicals, we believe that this was more likely due to labile carbon in the extracts which stimulated microbial biomass and activity. As a result microbial uptake increased, thereby depleting the plant available pool of N and P, or, for the P-rich Betula extract, depleting soil inorganic N alone, to the extent of reducing plant growth. This chain of events is supported by the negative correlation between plant growth and sugar content in the three added extracts, and the positive correlation between microbial activity, fungal biomass production and sugar content, and are known reactions when labile carbon is added to nutrient deficient soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 112 (1997), S. 305-313 
    ISSN: 1432-1939
    Keywords: Key words Nutrient limitation ; Microbial immobilization ; Festuca vivipara ; Soil labile carbon ; Allelopathy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Biomass production was analysed in Festuca vivipara, grown for 3 months in pots with non-sterilized or sterilized soil after factorial addition of three levels of labile carbon combined with high and low levels of N and P. The soil was a nutrient-poor subarctic heath soil. In the non-sterilized soil plant biomass production increased strongly only in the treatment with high levels of both N and P, which suggests that both nutrients limited plant growth. In the sterilized soil addition of a high level of N without P addition gave almost the same growth response as in the combined NP treatment. This was because of a more than 30-fold increase of inorganic phosphorus in the soil as P was released from the killed microbial biomass after sterilization. Sugar addition reduced plant growth in all treatments. The reduction in plant growth was dose dependent within the range of 0–450 μg C g−1 soil added to the non-sterilized soil, but the response levelled off at 233 μg C g−1 soil in the soil that had been sterilized at the start of the experiment. The plant response, together with observed depletion of soil inorganic N and P, indicated that the microbial biomass immobilized nutrients efficiently and reduced plant growth when extra labile carbon was added. The inhibition of growth was lower, however, in the soil which had been sterilized, probably because of a slow recovery of the microbial populations in it. Two of the nutrient-carbon solutions closely matched the N, P and C concentrations in a solution containing leaf extracts of Cassiope tetragona and Betula tortuosa that had been used previously to test for possible allelopathic effects of compounds in the leaf extracts. These extracts also reduced plant growth. The growth reduction was equally large or larger after nutrient-sugar addition than after addition of leaf extracts in three out of the four possible combinations of species and sterilized or non-sterilized soil. In the fourth case (Betula extract added to sterilized soil), the effect was larger when leaf extract was added than after addition of the nutrient-carbon solution. This could be due to a low rate of microbial degradation of phytotoxic substances in this soil because of a slow recovery of the microbial populations after sterilization. The generally stronger or equal effect of the nutrient-sugar addition compared to the leaf extract addition leads to the conclusion that microbial nutrient immobilization and microbial competition for nutrients increased as a function of labile carbon addition with the extract. Hence, it appears that enhanced microbial activity and microbial nutrient immobilization rather than phytotoxic effects was the primary reasons for the reduced biomass production in F. vivipara even after addition of the leaf extracts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...