ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-26
    Description: Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association (GWA) studies have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available, because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly self-fertilizing model plant known to harbour considerable genetic variation for many adaptively important traits. Our results are dramatically different from those of human GWA studies, in that we identify many common alleles of major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true associations from false. However, a-priori candidates are significantly over-represented among these associations as well, making many of them excellent candidates for follow-up experiments. Our study demonstrates the feasibility of GWA studies in A. thaliana and suggests that the approach will be appropriate for many other organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023908/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023908/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atwell, Susanna -- Huang, Yu S -- Vilhjalmsson, Bjarni J -- Willems, Glenda -- Horton, Matthew -- Li, Yan -- Meng, Dazhe -- Platt, Alexander -- Tarone, Aaron M -- Hu, Tina T -- Jiang, Rong -- Muliyati, N Wayan -- Zhang, Xu -- Amer, Muhammad Ali -- Baxter, Ivan -- Brachi, Benjamin -- Chory, Joanne -- Dean, Caroline -- Debieu, Marilyne -- de Meaux, Juliette -- Ecker, Joseph R -- Faure, Nathalie -- Kniskern, Joel M -- Jones, Jonathan D G -- Michael, Todd -- Nemri, Adnane -- Roux, Fabrice -- Salt, David E -- Tang, Chunlao -- Todesco, Marco -- Traw, M Brian -- Weigel, Detlef -- Marjoram, Paul -- Borevitz, Justin O -- Bergelson, Joy -- Nordborg, Magnus -- GM057994/GM/NIGMS NIH HHS/ -- GM073822/GM/NIGMS NIH HHS/ -- GM078536/GM/NIGMS NIH HHS/ -- GM62932/GM/NIGMS NIH HHS/ -- P42ES007373/ES/NIEHS NIH HHS/ -- R01 GM057994/GM/NIGMS NIH HHS/ -- R01 GM057994-05A1/GM/NIGMS NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- R01 GM062932-05/GM/NIGMS NIH HHS/ -- R01 GM073822/GM/NIGMS NIH HHS/ -- R01 GM073822-01A1/GM/NIGMS NIH HHS/ -- R01 GM078536-01A1/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):627-31. doi: 10.1038/nature08800. Epub 2010 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336072" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*classification/*genetics ; Arabidopsis Proteins/genetics ; Flowers/genetics ; Genes, Plant/genetics ; Genetic Loci/genetics ; Genome, Plant/*genetics ; *Genome-Wide Association Study ; Genotype ; Immunity, Innate/genetics ; Inbreeding ; *Phenotype ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-20
    Description: Higher-order chromatin structure is emerging as an important regulator of gene expression. Although dynamic chromatin structures have been identified in the genome, the full scope of chromatin dynamics during mammalian development and lineage specification remains to be determined. By mapping genome-wide chromatin interactions in human embryonic stem (ES) cells and four human ES-cell-derived lineages, we uncover extensive chromatin reorganization during lineage specification. We observe that although self-associating chromatin domains are stable during differentiation, chromatin interactions both within and between domains change in a striking manner, altering 36% of active and inactive chromosomal compartments throughout the genome. By integrating chromatin interaction maps with haplotype-resolved epigenome and transcriptome data sets, we find widespread allelic bias in gene expression correlated with allele-biased chromatin states of linked promoters and distal enhancers. Our results therefore provide a global view of chromatin dynamics and a resource for studying long-range control of gene expression in distinct human cell lineages.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dixon, Jesse R -- Jung, Inkyung -- Selvaraj, Siddarth -- Shen, Yin -- Antosiewicz-Bourget, Jessica E -- Lee, Ah Young -- Ye, Zhen -- Kim, Audrey -- Rajagopal, Nisha -- Xie, Wei -- Diao, Yarui -- Liang, Jing -- Zhao, Huimin -- Lobanenkov, Victor V -- Ecker, Joseph R -- Thomson, James A -- Ren, Bing -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):331-6. doi: 10.1038/nature14222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093-0653, USA [2] Medical Scientist Training Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. ; 1] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093-0653, USA [2] Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; The Morgridge Institute for Research, 309 North Orchard Street, Madison, Wisconsin 53715, USA. ; Tsinghua University-Peking University Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Twinbrook I NIAID Facility, Room 1417, 5640 Fishers Lane, Rockville, Maryland 20852, USA. ; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] The Morgridge Institute for Research, 309 North Orchard Street, Madison, Wisconsin 53715, USA [2] Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA [3] Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, USA. ; 1] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093-0653, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693564" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Allelic Imbalance/genetics ; *Cell Differentiation/genetics ; Cell Lineage/genetics ; Chromatin/*chemistry/genetics/*metabolism ; *Chromatin Assembly and Disassembly/genetics ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Gene Regulatory Networks ; Humans ; Promoter Regions, Genetic/genetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-08
    Description: Natural variation in clock parameters is necessary for the circadian clock to contribute to organismal fitness over a broad geographic range. Considerable variation is evident in the period, phase, and amplitude of 150 Arabidopsis accessions, and the period length is correlated with the day length at the latitude of origin, implying the adaptive significance of correctly regulated circadian timing. Quantitative trait loci analysis of recombinant inbred lines indicates that multiple loci interact to determine period, phase, and amplitude. The loss-of-function analysis of each member of the ARABIDOPSIS PSEUDO-RESPONSE REGULATOR family suggests that they are candidates for clock quantitative trait loci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michael, Todd P -- Salome, Patrice A -- Yu, Hannah J -- Spencer, Taylor R -- Sharp, Emily L -- McPeek, Mark A -- Alonso, Jose M -- Ecker, Joseph R -- McClung, C Robertson -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1049-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605371" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Alleles ; Arabidopsis/genetics/*physiology ; Arabidopsis Proteins/genetics/*physiology ; Biological Clocks ; *Circadian Rhythm ; DNA, Bacterial ; Fourier Analysis ; *Genes, Plant ; *Genetic Variation ; Light ; Mutation ; Plant Leaves/*physiology ; *Quantitative Trait Loci ; Seasons ; Selection, Genetic ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-08-02
    Description: Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, Jose M -- Stepanova, Anna N -- Leisse, Thomas J -- Kim, Christopher J -- Chen, Huaming -- Shinn, Paul -- Stevenson, Denise K -- Zimmerman, Justin -- Barajas, Pascual -- Cheuk, Rosa -- Gadrinab, Carmelita -- Heller, Collen -- Jeske, Albert -- Koesema, Eric -- Meyers, Cristina C -- Parker, Holly -- Prednis, Lance -- Ansari, Yasser -- Choy, Nathan -- Deen, Hashim -- Geralt, Michael -- Hazari, Nisha -- Hom, Emily -- Karnes, Meagan -- Mulholland, Celene -- Ndubaku, Ral -- Schmidt, Ian -- Guzman, Plinio -- Aguilar-Henonin, Laura -- Schmid, Markus -- Weigel, Detlef -- Carter, David E -- Marchand, Trudy -- Risseeuw, Eddy -- Brogden, Debra -- Zeko, Albana -- Crosby, William L -- Berry, Charles C -- Ecker, Joseph R -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):653-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893945" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; 5' Untranslated Regions ; Alleles ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Base Composition ; Chromosomes, Plant/genetics ; DNA, Bacterial/genetics ; DNA, Plant/chemistry/genetics ; Ethylenes/pharmacology ; Exons ; Expressed Sequence Tags ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant/drug effects ; Genes, Plant ; *Genome, Plant ; Introns ; *Mutagenesis, Insertional ; Mutation ; Oligonucleotide Array Sequence Analysis ; Promoter Regions, Genetic ; Recombination, Genetic ; Rhizobium/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-04
    Description: Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100360/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Pelizzola, Mattia -- Kida, Yasuyuki S -- Hawkins, R David -- Nery, Joseph R -- Hon, Gary -- Antosiewicz-Bourget, Jessica -- O'Malley, Ronan -- Castanon, Rosa -- Klugman, Sarit -- Downes, Michael -- Yu, Ruth -- Stewart, Ron -- Ren, Bing -- Thomson, James A -- Evans, Ronald M -- Ecker, Joseph R -- 1U01ES017166-01/ES/NIEHS NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- U01 ES017166-01/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 3;471(7336):68-73. doi: 10.1038/nature09798. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289626" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation/genetics ; Cell Line ; Cellular Reprogramming/*genetics ; CpG Islands/genetics ; DNA Methylation/*genetics ; Embryonic Stem Cells/cytology/metabolism ; Epigenomics ; Epistasis, Genetic/*genetics ; Fibroblasts/cytology/metabolism ; Genome, Human/*genetics ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/*metabolism ; Trophoblasts/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-08
    Description: Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its contribution to such diversity, its interaction with genetic variation requires further investigation. Here we report population-wide DNA sequencing of genomes, transcriptomes and methylomes of wild Arabidopsis thaliana accessions. Single cytosine methylation polymorphisms are not linked to genotype. However, the rate of linkage disequilibrium decay amongst differentially methylated regions targeted by RNA-directed DNA methylation is similar to the rate for single nucleotide polymorphisms. Association analyses of these RNA-directed DNA methylation regions with genetic variants identified thousands of methylation quantitative trait loci, which revealed the population estimate of genetically dependent methylation variation. Analysis of invariably methylated transposons and genes across this population indicates that loci targeted by RNA-directed DNA methylation are epigenetically activated in pollen and seeds, which facilitates proper development of these structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Robert J -- Schultz, Matthew D -- Urich, Mark A -- Nery, Joseph R -- Pelizzola, Mattia -- Libiger, Ondrej -- Alix, Andrew -- McCosh, Richard B -- Chen, Huaming -- Schork, Nicholas J -- Ecker, Joseph R -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32HG004830/HG/NHGRI NIH HHS/ -- K99 GM100000/GM/NIGMS NIH HHS/ -- K99GM100000/GM/NIGMS NIH HHS/ -- UL1 RR025774/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 14;495(7440):193-8. doi: 10.1038/nature11968. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467092" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics ; DNA Methylation/genetics ; DNA Transposable Elements/genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Genetic Variation/*genetics ; Genome, Plant/*genetics ; Linkage Disequilibrium/genetics ; Pollen/genetics ; Polymorphism, Genetic/genetics ; Quantitative Trait Loci ; RNA, Messenger/analysis/genetics ; RNA, Plant/genetics ; Seeds/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-17
    Description: Epigenetic information, which may affect an organism's phenotype, can be stored and stably inherited in the form of cytosine DNA methylation. Changes in DNA methylation can produce meiotically stable epialleles that affect transcription and morphology, but the rates of spontaneous gain or loss of DNA methylation are unknown. We examined spontaneously occurring variation in DNA methylation in Arabidopsis thaliana plants propagated by single-seed descent for 30 generations. We identified 114,287 CG single methylation polymorphisms and 2485 CG differentially methylated regions (DMRs), both of which show patterns of divergence compared with the ancestral state. Thus, transgenerational epigenetic variation in DNA methylation may generate new allelic states that alter transcription, providing a mechanism for phenotypic diversity in the absence of genetic mutation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210014/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210014/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmitz, Robert J -- Schultz, Matthew D -- Lewsey, Mathew G -- O'Malley, Ronan C -- Urich, Mark A -- Libiger, Ondrej -- Schork, Nicholas J -- Ecker, Joseph R -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32 HG004830-01/HG/NHGRI NIH HHS/ -- F32 HG004830-02/HG/NHGRI NIH HHS/ -- F32 HG004830-03/HG/NHGRI NIH HHS/ -- F32-HG004830/HG/NHGRI NIH HHS/ -- R01 HG003523/HG/NHGRI NIH HHS/ -- R01 HG003523-01/HG/NHGRI NIH HHS/ -- R01 HG003523-02/HG/NHGRI NIH HHS/ -- R01 HG003523-03/HG/NHGRI NIH HHS/ -- UL1 RR025774/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):369-73. doi: 10.1126/science.1212959. Epub 2011 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921155" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/metabolism ; *DNA Methylation ; DNA Transposable Elements ; DNA, Intergenic ; DNA, Plant/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; *Epigenesis, Genetic ; Genes, Plant ; Genetic Variation ; Genome, Plant ; Linear Models ; Mutation ; Polymorphism, Genetic ; Promoter Regions, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...