ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 102 (1998), S. 221-238 
    ISSN: 1573-2932
    Keywords: contaminated ; EDTA ; lead ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Lead contamination of soils is a common problem throughout the world. Laboratory batch test and bench scale experiments have shown that EDTA can be used to remove lead from contaminated soils. However, due to the high cost and laborious task associated with actual environmental remediation of a lead contaminated soil, there is a need to be able to predict the outcome of a remediation process in advance in order to optimize the process and minimize the cost. This paper describes the development and validation of a computer model which can be used to simulate the removal of lead from a contaminated soil column using EDTA as the chelating agent. The model is able to simulate the lead removal from soil based on equilibrium as well as kinetic dissolution of Pb. The comparison of the simulated results with actual lead concentrations both in effluent and soil shows that the model can predict the lead removal process with reasonable accuracy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-15
    Description: Author(s): A. P. Higginbotham, F. Kuemmeth, M. P. Hanson, A. C. Gossard, and C. M. Marcus Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (〉1  GHz) exchange oscillations with a quality factor Q∼15 are found for the multielectron ... [Phys. Rev. Lett. 112, 026801] Published Tue Jan 14, 2014
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37826 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The suite of exercise hardware aboard the International Space Station (ISS) generates an immense amount of data. The data collected, treadmill, cycle ergometer, and resistance strength training hardware, are basic exercise parameters (time, heart rate, speed, load, etc.). The raw data are processed in the laboratory and more detailed parameters are calculated from each exercise data file. Updates recently have been made to how these valuable data are stored, adding an additional level of security, increasing accessibility, and resulting in overall increased efficiency of medical report delivery. Questions regarding exercise performance or how exercise may influence other variables of crew health frequently arise within the crew health care community. Inquiries regarding the health of the exercise hardware often need quick analysis and response to ensure the exercise system is operable on a continuous basis. Consolidating all of the exercise system data in a single repository enables a quick response to both the medical and engineering communities. A SQL server database is currently in use, and provides a secure location for all of the exercise data starting at ISS Expedition 1 to current date. The database has been structured to update derived metrics automatically, making analysis and reporting available within minutes of dropping the in-flight data into the database. Commercial tools were evaluated to help aggregate and visualize data from the SQL database. The Tableau software provides manageable interface, which has improved the laboratorys output time of crew reports by 67%. Expansion of the SQL database, to be inclusive of additional medical requirement metrics, addition of app-like tools for mobile visualization, and collaborative use (e.g., operational support teams, research groups, and International Partners) of the data system, is currently being explored.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN51891 , Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40593 , NASA Human Research Program Investigators'' Workshop (HRP IWS) 2018; Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The suite of exercise hardware aboard the International Space Station (ISS) generates an immense amount of data. The data collected from the treadmill, cycle ergometer, and resistance strength training hardware are basic exercise parameters (time, heart rate, speed, load, etc.). The raw data are post processed in the laboratory and more detailed parameters are calculated from each exercise data file. Updates have recently been made to how this valuable data are stored, adding an additional level of data security, increasing data accessibility, and resulting in overall increased efficiency of medical report delivery. Questions regarding exercise performance or how exercise may influence other variables of crew health frequently arise within the crew health care community. Inquiries over the health of the exercise hardware often need quick analysis and response to ensure the exercise system is operable on a continuous basis. Consolidating all of the exercise system data in a single repository enables a quick response to both the medical and engineering communities. A SQL server database is currently in use, and provides a secure location for all of the exercise data starting at ISS Expedition 1 - current day. The database has been structured to update derived metrics automatically, making analysis and reporting available within minutes of dropping the inflight data it into the database. Commercial tools were evaluated to help aggregate and visualize data from the SQL database. The Tableau software provides manageable interface, which has improved the laboratory's output time of crew reports by 67%. Expansion of the SQL database to be inclusive of additional medical requirement metrics, addition of 'app-like' tools for mobile visualization, and collaborative use (e.g. operational support teams, research groups, and International Partners) of the data system is currently being explored.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40679 , Human Research Program Investigators'' Workshop (HRP IWS); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Heart rate monitoring is required for crewmembers during exercise aboard the International Space Station (ISS) and will be for future exploration missions. The cardiovascular system must be sufficiently stressed throughout a mission to maintain the ability to perform nominal and contingency/emergency tasks. High quality heart rate data are required to accurately determine the intensity of exercise performed by the crewmembers and show maintenance of VO2max. The quality of the data collected on ISS is subject to multiple limitations and is insufficient to meet current requirements. PURPOSE: To evaluate the performance of commercially available Bluetooth heart rate monitors (BT_HRM) and their ability to provide high quality heart rate data to monitor crew health aboard the ISS and during future exploration missions. METHODS: Nineteen subjects completed 30 data collection sessions of various intensities on the treadmill and/or cycle. Subjects wore several BT_HRM technologies for each testing session. One electrode-based chest strap (CS) was worn, while one or more optical sensors (OS) were worn. Subjects were instrumented with a 12-lead ECG to compare the heart rate data from the Bluetooth sensors. Each BT_HRM data set was time matched to the ECG data and a +/-5bpm threshold was applied to the difference between the 2 data sets. Percent error was calculated based on the number of data points outside the threshold and the total number of data points. RESULTS: The electrode-based chest straps performed better than the optical sensors. The best performing CS was CS1 (1.6% error), followed by CS4 (3.3% error), CS3 (6.4% error), and CS2 (9.2% error). The OS resulted in 10.4% error for OS1 and 14.9% error for OS2. CONCLUSIONS: The highest quality data came from CS1, but unfortunately it has been discontinued by the manufacturer. The optical sensors have not been ruled out for use, but more investigation is needed to determine how to obtain the best quality data. CS2 will be used in an ISS Bluetooth validation study, because it simultaneously transmits magnetic pulse that is integrated with existing exercise hardware on ISS. The simultaneous data streams allow for beat-to-beat comparison between the current ISS standard and CS2. Upon Bluetooth validation aboard ISS, the research team will down select a new BT_HRM for operational use.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34834 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: For future human exploration missions, NASA needs a health monitoring system composed of hardware that is compact, fully interoperable with an integrated data management system, and requires minimal consumables. Such a system will be achieved through the integration of small, easy to use biomedical sensors that will have the ability to measure, store and transmit physiological parameters during operational and ambulatory activity. Since 2012, the Canadian Space Agency (CSA) has been active in funding the development of wearable biomonitoring sensors. The Astroskin is the first prototype and consists of a shirt-based garment and headband with embedded sensors, and associated software and technology that measure vital signs, sleep quality and activity level of the wearer. NASA and CSA have been collaborating since 2014 to test and validate this system in a lab environment at Ames Research Center and more recently in the Human Exploration Research Analog (HERA) located at Johnson Spaceflight Center. Specific objectives of the HERA study were: 1) to assess the performance of the Astroskin biosensor system for long-term health monitoring (24-hours) capabilities and during exercise as a measure of crew fitness; 2) to obtain crew feedback on comfort and usability of the Astroskin system; 3) to demonstrate performance of Bluetooth communication during real-time transmission and for verification of data in this environment; and 4) to obtain baseline data for further development of algorithms and tools that facilitate decision support for diagnosing and monitoring of a sick or injured crewmember. HERA Campaign 3 included four missions (each 30-days in duration) with four crewmembers assigned to each mission. A total of 9 men and 7 women participated in the Astroskin evaluation that included continuous physiological monitoring (24-hours) on mission days MD-11, MD1 (high workload), MD15 (low workload), MD19, MD29, and MD+7. Mission days 19 and 29 also included 30 minutes of sub-maximal exercise on a cycle ergometer. Following each 24-hour monitoring session crew physiological data were downloaded to laptops and each crewmember completed a 28 question survey on their experiences with the Astroskin hardware and software. This presentation will focus on lessons learned from the HERA missions. Specifically it will address Astroskin system performance in terms of data loss and data quality (no comparison to lab standard devices), wireless communication with the onboard mobile device, crew usability and comfort, and future development of a next generation biomonitoring system.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN38722 , 2017 Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32216 , NASA''s Human Research Program Investigator''s Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: During extended periods of skeletal unloading, losses in strength and density of the proximal femur will occur. In long-duration spaceflight, resistive exercise is used to replace the normal loads exerted on the spine and hip. At the present time, there is no conclusive evidence that hip bone loss has been prevented in this scenario. Our group has recently developed and clinically evaluated a multifunctional exercise system, the Combined Countermeasure Device (CCD). The CCD comprises a low-footprint Stuart Platform for lower-body resistance exercise and balance training, and a cardiovascular exercise bicycle. A consideration for resistance exercise was targeting of the hip abductor and adductor muscles, which attach directly at the hip and which should subject it to the largest loads. In our training study, we found that CCD exercise increased hip adductor and abductor strength, and modeling results suggest that this exercise exerts forces on the hip of approx. 4-6 body weights at 1g, compared to forces of approx.2.5 body weight y squatting exercise. In our current study, we hypothesize that abductor and adductor exercise will increase the density and strength of the proximal femur.
    Keywords: Aerospace Medicine
    Type: JSC-CN-25294 , 2012 NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...