ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine; Space Radiation  (2)
  • Space Transportation and Safety  (1)
  • 1
    Publication Date: 2019-07-19
    Description: Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.
    Keywords: Aerospace Medicine; Space Radiation
    Type: NF1676L-19846 , Annual Space Radiation Investigators'' Workshop (2015 Space Rad IWS); Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A safe and efficient exploration of space requires an understanding of space radiations so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation is modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method to predict the effects of the presence of these particles on the transport of radiation through materials is presented.
    Keywords: Space Transportation and Safety
    Type: 13th Annual Wisconsin Space Conference; Aug 14, 2003 - Aug 15, 2003; Green Bay, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Accurate galactic cosmic ray (GCR) models are required to assess crew exposure during long-duration missions to the Moon or Mars. Many of these models have been developed and compared to available measurements, with uncertainty estimates usually stated to be less than 15%. However, when the models are evaluated over a common epoch and propagated through to effective dose, relative differences exceeding 50% are observed. This indicates that the metrics used to communicate GCR model uncertainty can be better tied to exposure quantities of interest for shielding applications. This is the first of three papers focused on addressing this need. In this work, the focus is on quantifying the extent to which each GCR ion and energy group, prior to entering any shielding material or body tissue, contributes to effective dose behind shielding. Results can be used to more accurately calibrate model-free parameters and provide a mechanism for refocusing validation efforts on measurements taken over important energy regions. Results can also be used as references to guide future nuclear cross-section measurements and radiobiology experiments. It is found that GCR with Z〉2 and boundary energies below 500 MeV/n induce less than 5% of the total effective dose behind shielding. This finding is important given that most of the GCR models are developed and validated against Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer (ACE/CRIS) measurements taken below 500 MeV/n. It is therefore possible for two models to very accurately reproduce the ACE/CRIS data while inducing very different effective dose values behind shielding.
    Keywords: Aerospace Medicine; Space Radiation
    Type: NF1676L-17812 , Space Weather; 12; 4; 217-224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...