ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (2)
  • Aerospace Medicine; Man/System Technology and Life Support  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-13
    Description: The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore we are challenged to reduce the mass of the food system by 10% while maintaining safety, nutrition, and acceptability to support crew health and performance for exploration missions. Meal replacement with nutritionally balanced, 700-900 calorie bars was identified as a method to reduce mass. However, commercially available products do not meet the requirements for a meal replacement in the spaceflight food system. The purpose of this task was to develop a variety of nutritionally balanced, high quality, breakfast replacement bars, which enable a 10% food mass savings. To date, six nutrient-dense meal replacement bars have been developed, all of which meet spaceflight nutritional, microbiological, sensory, and shelf-life requirements. The four highest scoring bars were evaluated based on final product sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. color and texture), and microbiological compliance over a period of two years to predict long-term acceptability. All bars maintained overall acceptability throughout the first year of storage, despite minor changes in color and texture. However, added vitamins C, B1, and B9 degraded rapidly in fortified samples of Banana Nut bars, indicating the need for additional development. In addition to shelf-life testing, four bar varieties were evaluated in the Human Exploration Research Analog (HERA), campaign 3, to assess the frequency with which actual meal replacement options may be implemented, based on impact to satiety and psychosocial measurements. Crewmembers (n=16) were asked to consume meal replacement bars every day for the first fifteen days of the mission and every three days for the second half of the mission. Daily surveys assessed the crew's responses to bar acceptability, mood, food fatigue and perceived stress. Preliminary results indicate that the majority of crew members were noncompliant with daily meal replacement during the first half of the mission. Several crew members chose to forgo the meal, resulting in caloric deficits that were higher on skipped-bar days. Body mass loss was significant throughout the mission. Although there was no significant difference in body mass loss overall between the first half and second half of the mission, a higher number of individual crew members lost more body mass in the first half of the mission. Analysis is still ongoing, but current trends suggest that daily involuntary meal replacement can lead to greater individual impacts on body mass and psychological factors, while meal replacement on a more limited basis may be acceptable to most crew for missions up to 30 days. This data should be considered in Orion mass trades with health and human performance.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: JSC-CN-40656 , Human Research Program Investigator''s Workshop (HRP IWS); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: NASA, in planning for long duration missions, has an imperative to provide a food system with the necessary nutrition, acceptability, and safety to ensure sustainment of crew health and performance. The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore we are challenged to reduce the mass of the food system by 10% while maintaining safety, nutrition, and acceptability for exploration missions. Food bars have previously been used to supplement meals in the Skylab food system, indicating that regular consumption of bars will be acceptable. However, commercially available products do not meet the requirements for a full meal replacement in the spaceflight food system. The purpose of this task is to develop a variety of nutritionally balanced breakfast replacement bars, which meet spaceflight nutritional, microbiological, sensorial, and shelf-life requirements, while enabling a 10% food mass savings. To date, six nutrient-dense meal replacement bars have been developed, using both traditional methods of compression as well as novel ultrasonic compression technologies developed by Creative Resonance Inc. (Phoenix, AZ). All bars will be prioritized based on acceptability and the four top candidates will be evaluated in the Human Exploration Research Analog (HERA) to assess the frequency with which actual meal replacement options may be implemented. Specifically, overall impact to mood, satiety, dietary discomfort, and satisfaction with food will be analyzed to inform successful implementation strategies. In addition, these bars will be evaluated based on final product sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. water activity and texture), and microbiological compliance over two years of storage at room temperature and potential temperature abuse conditions to predict long-term acceptability. It is expected that this work will enable a successful meal replacement strategy to be implemented that maintains crew food consumption and health, while informing exploration missions with appropriate mass savings expectations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34786 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA, in planning for long-duration missions, has an imperative to provide a food system with the necessary nutrition, acceptability, and safety to ensure sustainment of crew health and performance. The Orion Multi-Purpose Crew Vehicle (MPCV) and future exploration missions are mass constrained; therefore the team is challenged to reduce the mass of the food system by 10% while maintaining product safety, nutrition, and acceptability. Commercially available products do not meet the nutritional requirements for a full meal replacement in the spaceflight food system, and it is currently unknown if daily meal replacements will impact crew food intake and psychosocial health over time. The purpose of this study was to develop a variety of nutritionally balanced breakfast replacement bars that meet spaceflight nutritional, microbiological, sensorial, and shelf-life requirements, while enabling a 10% savings in food mass. To date, six nutrient-dense meal replacement bars (approximately 700 calories per bar) have been developed, using traditional methods of compression as well as novel ultrasonic compression technologies developed by Creative Resonance Inc. (Phoenix, AZ). The four highest rated bars were evaluated in the Human Exploration Research Analog (HERA) to assess the frequency with which actual meal replacement options may be implemented. Specifically, overall impact of bars on mood, satiety, digestive discomfort, and satisfaction with food. These factors are currently being analyzed to inform successful implementation strategies where crew maintain adequate food intake. In addition, these bars are currently undergoing shelf-life testing to determine long-term sensory acceptability, nutritional stability, qualitative stability of analytical measurements (i.e. water activity and texture), and microbiological compliance over two years of storage at room temperature and potential temperature abuse conditions to predict long-term acceptability. It is expected that this work will enable a successful meal replacement strategy to be implemented that will maintain crew food consumption and health, while informing exploration missions with appropriate mass savings expectations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-37796 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...