ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 9 (1989), S. 225-244 
    ISSN: 1573-0662
    Keywords: Arctic ; Arotic haze ; Absorption of radiation ; Acrosol ; Opcical depth ; Total-diffuse radiation ; Heating rate ; Solar ; Infrared ; Radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The interaction of the Aretic winter aerosol (Arctic haze) with solar radiation produces changes in the radiation field that result in the enhancement of scattering and absorption processes which alter the energy balance and solar energy distribution in the Arctic atmosphere-surface system. During the second Arctic Gas and Aerosols Sampling Project (AGASP II) field experiment, we measured radiation parameters using the NOAA WP-3D research aircraft as a platform. State-of-the-art instrumentation was used to measure in situ the absorption of solar radiation by the Arctic atmosphere during severe haze events. Simultaneously with the absorption measurements, we determined optical depths, and total, direct, and scattered radiation fields. All optical measurements were made at spectral bands centered at 412, 500, 675, and 778 nm and with a bandpass of 10 nm. With this selection of spectral regions we concentrated on the measurement of the radiative effects of the aerosol excluding most of the contributions by the gaseous components of the atmosphere. An additional measurement performed during these experiments was the determination of total solar spectrum fluxes. The experimentally determined parameters were used to define an aerosol model that was employed to deduce the absorption by the aerosols over the full solar spectrum and to calculate atmospheric heating rate profiles. The analyses summarized above allowed us to deduce the magnitude of the change in some important parameters. For example, we found changes in instantaneous heating rate of up to about 0.6 K/day. Besides the increased absorption (30 to 40%) and scattering of radiation by the atmosphere, the haze reduces the surface absorption of solar energy by 6 to 10% and the effective planetary albedo over ice surfaces by 3 to 6%. The vertical distribution of the absorbing aerosol is inferred from the flux measurements. Values for the specific absorption of carbon are found to be around 6 m2/g for externally mixed aerosol and about 11.7 m2/g for internally mixed aerosol. A complete study of the radiative effects of the Arctic haze should include infrared measurements and calculations as well as physics of the ice, snow, and water surfaces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...