ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acanthochromis polyacanthus, length; Acanthochromis polyacanthus, length, standard error; Acanthochromis polyacanthus, weight; Acanthochromis polyacanthus, weight, standard error; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chordata; Containers and aquaria (20-1000 L or 〈 1 m**2); Digital camera; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Laboratory strains; Measured; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Otolith, length; Otolith area; Otolith area, standard error; Otolith circularity; Otolith circularity, standard error; Otolith length, standard error; Otolith perimeter; Otolith perimeter, standard error; Otolith rectangularity; Otolith rectangularity, standard error; Paracentrotus lividus; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (HQ11D, Hach Co., Loveland, CO); Salinity; see reference(s); Single species; South Pacific; Temperature, water  (1)
  • Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gasterosteus aculeatus; Gene expression (incl. proteomics); Individual ID; Laboratory experiment; mRNA gene expression, relative; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Salinity; Salinity, standard deviation; Single species; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type of study  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: The continuous increase of anthropogenic CO2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback (Gasterosteus aculeatus), cinnamon anemonefish (Amphiprion melanopus) and spiny damselfish (Acanthochromis polyacanthus) exposed to elevated CO2. The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO2–exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO2 level.
    Keywords: Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gasterosteus aculeatus; Gene expression (incl. proteomics); Individual ID; Laboratory experiment; mRNA gene expression, relative; Nekton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Salinity; Salinity, standard deviation; Single species; South Pacific; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1474 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Munday, Philip L; Gagliano, Monica; Donelson, Jennifer M; Dixon, Danielle L; Thorrold, Simon R (2011): Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series, 423, 211-221, https://doi.org/10.3354/meps08990
    Publication Date: 2024-03-15
    Description: Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes
    Keywords: Acanthochromis polyacanthus, length; Acanthochromis polyacanthus, length, standard error; Acanthochromis polyacanthus, weight; Acanthochromis polyacanthus, weight, standard error; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chordata; Containers and aquaria (20-1000 L or 〈 1 m**2); Digital camera; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Laboratory strains; Measured; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Otolith, length; Otolith area; Otolith area, standard error; Otolith circularity; Otolith circularity, standard error; Otolith length, standard error; Otolith perimeter; Otolith perimeter, standard error; Otolith rectangularity; Otolith rectangularity, standard error; Paracentrotus lividus; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (HQ11D, Hach Co., Loveland, CO); Salinity; see reference(s); Single species; South Pacific; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 144 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...