ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Abscisic acid and protein synthesis ; Aleurone ; Calcium and protein synthesis ; Protein synthesis ; Protein phosphorylation ; Seed development ; Triticum (ABA, Ca2+, protein synthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aleurone tissue of mature wheat (Triticum aestivum L. cv. Sappo) grains make novel polypeptides in response to abscisic acid (ABA), but only in the presence of Ca2+. Effects of ABA plus Ca2+ include up- and down-modulation of other polypeptides. The ABA-induced polypeptides appear not to be the 21-kilodalton (kDa) amylase inhibitor which has been reported to be ABA-inducible in barley. Aleurone tissue from developing grains of different ages failed to respond to ABA plus Ca2+ in any way. Endogenous ABA levels were determined by monoclonal radioimmunoassay in developing, mature, and “sensitised” developing tissues. The ABA level rose to a maximum at 35 days post anthesis but was not detectable in mature cells. Developing layers sensitised to gibberellic acid (GA) showed decreased levels of ABA, similar to those in mature tissue, concurrent with acquired responsiveness to GA in respect of its induction of α-amylase. However, these sensitised cells still remained non-responsive to added ABA in terms of modulation of polypeptide pattern, though they did respond to ABA in the blocking of GA-induced α-amylase production. The role of protein phosphorylation in signal transduction was examined. The implications of these findings are discussed with reference to the role of ABA in developing and mature aleurone cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Numerical procedures that can accomplish model reductions for space trusses were developed. Three techniques are presented that can be implemented using current capabilities within NASTRAN. The proposed techniques accomplish their model reductions numerically through use of NASTRAN structural analyses and as such are termed numerical in contrast to the previously developed analytical techniques. Numerical procedures are developed that permit reductions of large truss models containing full modeling detail of the truss and its joints. Three techniques are presented that accomplish these model reductions with various levels of structural accuracy. These numerical techniques are designated as equivalent beam, truss element reduction, and post-assembly reduction methods. These techniques are discussed in detail.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Marshall Space Flight Center Structural Dynamics and Control Interaction of Flexible Structures; p 567-594
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The transient analysis of trusses having nonlinear joints can be accomplished using the residual force technique. The technique was applied a two degree of freedom spring mass system, a four bay planar truss, and an actual ten bay deployable truss. Joints chosen for analysis were the nonlinear gap joints and the linear Voigt joints. Results from the nonlinear gap analyses generally indicate that coupling between the modes can display some interesting effects during free vibration. One particularly interesting effect was that the damping of the structure appeared to be higher than could be accounted for from modal damping alone. Energy transferral from the lower to the higher modes was found to exist as a result of the modal coupling. The apparently increased damping was due to the fact that the energy transferred to the higher modes is inherently dissipated more quickly. Another interesting phenomenon was that the lower modes could drive the higher modes even during free vibration and that these modes could display a rather large quasi-steady state behavior even when modal damping was present. Gaps were also found to increase the amplitude and period of the free vibration response as expected.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Marshall Space Flight Center Structural Dynamics and Control Interaction of Flexible Structures; p 539-566
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 87-0892
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...