ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Abscisic acid and protein synthesis ; Aleurone ; Calcium and protein synthesis ; Protein synthesis ; Protein phosphorylation ; Seed development ; Triticum (ABA, Ca2+, protein synthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aleurone tissue of mature wheat (Triticum aestivum L. cv. Sappo) grains make novel polypeptides in response to abscisic acid (ABA), but only in the presence of Ca2+. Effects of ABA plus Ca2+ include up- and down-modulation of other polypeptides. The ABA-induced polypeptides appear not to be the 21-kilodalton (kDa) amylase inhibitor which has been reported to be ABA-inducible in barley. Aleurone tissue from developing grains of different ages failed to respond to ABA plus Ca2+ in any way. Endogenous ABA levels were determined by monoclonal radioimmunoassay in developing, mature, and “sensitised” developing tissues. The ABA level rose to a maximum at 35 days post anthesis but was not detectable in mature cells. Developing layers sensitised to gibberellic acid (GA) showed decreased levels of ABA, similar to those in mature tissue, concurrent with acquired responsiveness to GA in respect of its induction of α-amylase. However, these sensitised cells still remained non-responsive to added ABA in terms of modulation of polypeptide pattern, though they did respond to ABA in the blocking of GA-induced α-amylase production. The role of protein phosphorylation in signal transduction was examined. The implications of these findings are discussed with reference to the role of ABA in developing and mature aleurone cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Aleurone ; α-Amylase ; Complementary DNA ; Gibberellin and gene expression ; Seed development ; Triticum (gibberellin)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aleurone tissue from freshly harvested immature wheat grains (Triticum aestivum L. cv. Sappo) which is normally unresponsive to gibberellic acid can be made responsive by subjecting the tissue to a pre-incubation treatment in a simple buffered medium prior to the addition of the growth substance. The effectiveness of this treatment is dependent on grain age, with grains less than 15–20 days post anthesis failing to become converted to a responsive state whilst tissue from grains older than this become increasingly susceptible. Tissue from grains of a certain age (approx. 25–28 days post anthesis) produce small amounts of α-amylase following this treatment even in the absence of exogenously applied growth substance. Using different 32-labelled complementary-DNA probes for α-amylase in wheat it was demonstrated that the failure of freshly harvested tissue to produce α-amylase was correlated with the absence of the appropriate mRNA species. Inability to accumulate α-amylase mRNA in response to gibberellic acid was removed by the pre-iccubation treatment and also by enforced drying. The gibberellin-regulated expression of other unidentified genes also responds to pre-incubation or drying. Induction of gibberellin-responsiveness in immature aleurone cells did not extend to the secretion of acid phosphatase, protease and ribonuclease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...