ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_EcolChem; Biological sample; BIOS; Ecological Chemistry @ AWI; Greenland; W_Greenland  (1)
  • Harmful algal bloom  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sala-Pérez, Manuel; Alpermann, Tilman J; Krock, Bernd; Tillmann, Urban (2016): Growth and bioactive secondary metabolites of arctic Protoceratium reticulatum (Dinophyceae). Harmful Algae, 55, 85-96, https://doi.org/10.1016/j.hal.2016.02.004
    Publication Date: 2024-04-14
    Description: Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15 °C, a significant but slow growth at 1 °C, and cell death at 25 °C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10 °C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19 per day, and total YTX concentration ranged from 0.3 to 15.0 pg YTX/cell and from 0.5 to 31.0 pg YTX/cell at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.
    Keywords: AWI_EcolChem; Biological sample; BIOS; Ecological Chemistry @ AWI; Greenland; W_Greenland
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 132.7 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 547 (2016): 33-46, doi:10.3354/meps11660.
    Description: The bloom-forming dinoflagellate Alexandrium fundyense has been extensively studied due its toxin-producing capabilities and consequent impacts to human health and economies. This study investigated the prevalence of resting cysts of A. fundyense in western Greenland and Iceland to assess the historical presence and magnitude of bloom populations in the region, and to characterize environmental conditions during summer, when bloom development may occur. Analysis of sediments collected from these locations showed that Alexandrium cysts were present at low to moderate densities in most areas surveyed, with highest densities observed in western Iceland. Additionally, laboratory experiments were conducted on clonal cultures established from isolated cysts or vegetative cells from Greenland, Iceland, and the Chukchi Sea (near Alaska) to examine the effects of photoperiod interval and irradiance levels on growth. Growth rates in response to the experimental treatments varied among isolates, but were generally highest under conditions that included both the shortest photoperiod interval (16h:8h light:dark) and higher irradiance levels (~146-366 µmol photons m-2 s-1), followed by growth under an extended photoperiod interval and low irradiance level (~37 µmol photons m-2 s-1). Based on field and laboratory data, we hypothesize that blooms in Greenland are primarily derived from advected Alexandrium populations, as low bottom temperatures and limited light availability would likely preclude in situ bloom development. In contrast, the bays and fjords in Iceland may provide more favorable habitat for germling cell survival and growth, and therefore may support indigenous, self-seeding blooms.
    Description: Funding for this study was provided by the James M. and Ruth P. Clark Arctic Research Initiative to Anderson and Richlen, and for the ARCHEMHAB expedition via the Helmholtz Institute initiative Earth and Environment under the PACES Program Topic 2 Coast (Workpackage 3) of the Alfred Wegener Institute. Additional support was provided by the Woods Hole Center for Oceans and Human Health through National Science Foundation (NSF) Grant OCE-1314642 and National Institute of Environmental Health Sciences (NIEHS) Grant 1-P01-ES021923-01.
    Description: 2017-04-07
    Keywords: Arctic ; Alexandrium ; Dinoflagellate ; Cysts ; Harmful algal bloom
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...