ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Near-infrared images of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 microns obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard the Cosmic Background Explorer (COBE) satellite are used to characterize its morphology and to determine its infrared luminosity and mass. Earlier analysis of the DIRBE observations (Weiland et al. 1994) provided supporting evidence for the claim made by Blitz & Spergel (1991) that the bulge is bar-shaped with its near end in the first Galactic quadrant. Adopting various triaxial analytical functions to represent the volume emissivity of the source, we confirm the barlike nature of the bulge and show that triaxial Gaussian-type functions provide a better fit to the data than other classes of functions, including an axisymmetric spheroid. The introduction of a `boxy' geometry, such as the one used by Kent, Dame, & Fazio (1991) improves the fit to the data. Our results show that the bar is rotated in the plane with its near side in the first Galactic quadrant creating an angle of 20 deg +/- 10 deg between its major axis and the line of sight to the Galactic center. Typical axis ratios of the bar are (1:0.33 +/- 0.11:0.23 +/- 0.08), resembling the geometry of prolate spheroids. There is no statistically significant evidence for an out-of-plane tilt of the bar at 2.2 microns, and marginal evidence for a tilt of approximately equal 2 deg at 4.9 microns. The introduction of a roll around the intrinsic major axis of the bulge improves the `boxy' appearance of some functions. A simple integration of the observed projected intensity of the bulge gives a bulge luminosity of 1.2 x 10(exp 9), 4.1 x 10(exp 8), 2.3 x 10(exp 8), and 4.3 x 10(exp 7) solar luminosity, respectively, at 1.25, 2.2, 3.5, and 4.9 microns wavelength for a Galactocentric distance of 8.5 kpc. The 2.2 microns luminosity function of the bulge population in the direction of Baade's window yields a bolometric luminosity of L(sub bol) = 5.3 x 10(exp 9) solar luminosity. Stellar evolutionary models relate this luminosity to the number of main-sequence progenitor stars that currently populate the red giant branch. Combined with the recent determination of the main-sequence turnoff mass for the bulge by the Hubble Space Telescope (Holtzman et al. 1993) we derive a photometrically determined bulge mass of approximately equal to 1.3 x 10(exp 10) solar mass for a Salpeter initial mass function extended down to 0.1 solar mass.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 2; p. 716-730
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Comet Austin was observed by the Cosmic Background Explorer (COBE)/Diffuse Infrared Background Experiment (DIRBE) with broadband photometry at 1-240 micrometers during the comet's close passage by Earth in 1990 May. A 6 deg long (6 x 10(exp 6) km) dust tail was found at 12 and 25 micrometers, with detailed structure due to variations in particle properties and mass-loss rate. The spectrum of the central 42 x 42 sq arcmin pixel was found to agree with that of a graybody of temperature 309 +/- 5 K and optical depth 7.3 +/- 10(exp -8). Comparison with IUE and ground-based obervations indicates that particles of radius greater than 20 micrometers predominate by surface area. A mass-loss rate of 510 (+510/-205) kg/s and a total tail mass of 7 +/- 2 x 10(exp 10) kg was found for a model dust tail composed of Mie spheres with a differential particle mass distribution dn/d log m approx. m(exp -0.63) and 2:1 silicate:amorphous carbon composition by mass.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 432; 1; p L71-L74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: IRAS 09371 + 1212 is still an absolutely unique object. This M giant star, with circumstellar CO and a spectacular bipolar nebula, displays unique IRAS FIR colors which had been attributed to strong emission in the 40-70-micron bands of ice, as subsequently supported by the observation of a strong 3.1-micron absorption band. The results of the KAO observations have confirmed its unusual nature: the far-infrared bands of ice are by far the strongest known. Its dust temperature, 50 K or less, is by far the lowest known for a late-type circumstellar envelope.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 355; L27-L30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...