ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0173-0835
    Keywords: Densitometry ; Polyacrylamide gel electrophoresis ; Rosaniline dyes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: In the present study we evaluated the performance of a software/scanner system that employed the Hewlett Packard (HP) ScanJet Plus and Scanplot Software for densitometric quantification of protein loads stained with Coomassie Brilliant Blue following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Gels with bovine serum albumin (BSA) standards, ranging from 0.125 to 10 μg, were scanned using reflectance densitometry with 127 μm step size in both the x and y directions and a resolution of 200 dots per inch. Densitometric volume was calculated for each protein band from scanner output in the tagged image file format (TIFF) by a customized software package, Scanplot V. 4.05 (Cunningham Engineering). Protein loads between 0.125 and 10.0 μg vs. volume were fit by a second-order regression: Volume = -0.58 × protein load2 + 16.82 × protein load + 7.87 (r = 0.991, p 〈 0.01). The same gels were scanned and quantified using a transmittance laser densitometer; densitometric volumes measured by both systems were highly correlated (r2 = 0.981, p 〈 0.01). Additional gels of BSA, smooth muscle myosin heavy chain (myosin), and actin displayed linear relationships between protein loads up to 4.0 μg and densitometric volume reflecting unique dye binding properties. We conclude that accurate and reproducible quantitative densitometry of SDS-PAGE can be performed using the HP ScanJet Plus scanner and Scanplot software.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a summary of the deterministic impulsive delta-V budget required to establish the baseline mission trajectory design is presented.
    Keywords: ASTRODYNAMICS
    Type: In: Spaceflight dynamics 1993; AAS(NASA International Symposium, 8th, Greenbelt, MD, Apr. 26-30, 1993, Parts 1 & 2 . A95-85716 (ISSN 0065-3438); p. 157-171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...