ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way.
    Keywords: AERODYNAMICS
    Type: NASA-TM-104206 , NAS 1.15:104206 , AVSCOM-TR-92-B-007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-4746 , In: AIAA(USAF)NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pt. 1 (A93-20301 06-66); p. 465-478.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A study is conducted to analyze the performance of different turbulence models when applied to flow through a Mach 7.4 hypersonic inlet. The analysis, which is two-dimensional, is done by comparing computational results from a Parabolized Navier-Stokes code and a full Navier-Stokes code, with experimental data. The McDonald-Camarata (MC) and Baldwin-Lomax (BL) models were the two zero-equation models used in the study. The Turbulent Kinetic Energy (TKE) model was chosen as a representative higher order model. The MC model, when run with transition of flow, provides a solution which compares excellently with the data. Transition has a first order effect on the overall solution provided by the code. The BL model predicts separation of flow in the inlet, which contradicts experimental findings. The TKE model does not perform any better than the MC and BL models, despite the fact that it is a higher order turbulence model. The BL and TKE models predict transition in the inlet at a location which is much earlier than observed in the experiment. This may be attributed to the empirical constants used to determine the point of transition.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 88-2957
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.
    Keywords: AERODYNAMICS
    Type: ASME PAPER 87-GT-145
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 1354-136
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...