ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (3)
  • 551.9  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-07-05
    Description: Sustainable arable cropping relies on repeated liming. Yet, the associated increase in soil pH can reduce the availability of iron (Fe) to plants. We hypothesized that repeated liming, but not pedogenic processes such as lessivage (i.e., translocation of clay particles), alters the Fe cycle in Luvisol soil, thereby affecting Fe isotope composition in soils and crops. Hence, we analysed Fe concentrations and isotope compositions in soil profiles and winter rye from the long‐term agricultural experimental site in Berlin‐Dahlem, Germany, where a controlled liming trial with three field replicates per treatment has been conducted on Albic Luvisols since 1923. Heterogeneity in subsoil was observed at this site for Fe concentration but not for Fe isotope composition. Lessivage had not affected Fe isotope composition in the soil profiles. The results also showed that almost 100 years of liming lowered the concentration of the HCl‐extractable Fe that was potentially available for plant uptake in the surface soil (0–15 cm) from 1.03 (standard error (SE) 0.03) to 0.94 (SE 0.01) g kg−1. This HCl‐extractable Fe pool contained isotopically lighter Fe (δ56Fe = −0.05 to −0.29‰) than the bulk soil (δ56Fe = −0.08 to 0.08‰). However, its Fe isotope composition was not altered by the long‐term lime application. Liming resulted in relatively lower Fe concentrations in the roots of winter rye. In addition, liming led to a heavier Fe isotope composition of the whole plants compared with those grown in the non‐limed plots (δ56FeWholePlant_ + Lime = −0.12‰, SE 0.03 vs. δ56FeWholePlant_‐Lime = −0.21‰, SE 0.01). This suggests that the elevated soil pH (increased by one unit due to liming) promoted the Fe uptake strategy through complexation of Fe(III) from the rhizosphere, which favoured heavier Fe isotopes. Overall, the present study showed that liming and a related increase in pH did not affect the Fe isotope compositions of the soil, but may influence the Fe isotope composition of plants grown in the soil if they alter their Fe uptake strategy upon the change of Fe availability. Highlights Fe concentrations and stocks, but not Fe isotope compositions, were more heterogeneous in subsoil than in topsoil. Translocation of clay minerals did not result in Fe isotope fractionation in the soil profile of a Luvisol. Liming decreased Fe availability in topsoil, but did not affect its δ56Fe values. Uptake of heavier Fe isotopes by graminaceous crops was more pronounced at elevated pH.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551.9 ; liming ; plant‐available Fe pool in soil ; winter rye ; δ56Fe
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 2135-2148 
    ISSN: 0887-624X
    Keywords: macrocyclic oligomers ; co-cyclic oligomers ; phthalazinone ; MALDI-TOF-MS ; rheology ; ring-opening polymerization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Preparation of novel high Tg (220-280°C) macrocyclic oligomers in high yield by the reaction of 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one with activated difluoro-monomers is described. The reaction, conducted under pseudo-high dilution conditions, produces cyclic oligomers in 90-97% isolated yield. Detailed structural characterization of these novel oligomers by the combination of NMR, MALDI-TOF-MS, GPC, and reverse-phase HPLC confirm the cyclic nature and reveal the composition of these cyclic oligomers. MALDI-TOF-MS which enables the detection of oligomers with mass up to 6000 Da, is shown to be a very powerful tool for determination of and the proof of the cyclic nature of the cyclic oligomers. The MALDI results provide answers to the possible combinations of monomer units in the cyclic oligomeric components for random co-cyclic oligomers. Rheological measurement of cyclic oligomers 3c shows that the cyclic oligomers are thermally stable in the melt and the molten cyclic oligomers essentially behave like Newtonian fluids. At 340°C and 100 s-1 the steady-state shear viscosity of the molten cyclic oligomers 3c is only about 14 poise. Ring-opening polymerization of the co-cyclic oligomers 4 to a high molecular weight polymer with Mw = 87,000 is achieved by heating at 340°C for 45 min in the presence of a nucleophilic initiator. © 1996 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 375-385 
    ISSN: 0887-624X
    Keywords: poly(aryl ether ketone) ; macrocyclic oligomers ; anionic ring-opening polymerization ; nucleophilic initiator ; melt polymerization ; transetherification ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Facile ring-opening polymerization of cyclic aryl ether oligomers containing the 1,2-dibenzoylbenzene moiety to form high molecular weight linear polymers in the presence of a nucleophilic initiator is described. The polymerization can be initiated in the melt in the presence of a nucleophilic initiator such as potassium carbonate, cesium fluoride, and alkali phenoxides. Various alkali phenoxides were investigated as potential nucleophilic initiators. The polymerization reaction rate in the melt increases in the order of K+ 〉 Na+ 〉 Cs+, and in the order of -OPhPhO- 〉 PhO- 〉 PhOPhO- 〉 PhPhO-. However, the polymerization in an aprotic dipolar solvent is faster in the presence of cesium phenoxide than in the presence of potassium phenoxide. Polymerization of the cyclic oligomers in solution demonstrates that the ring-opening polymerization proceeds via a chain-growth mechanism and involves a transetherification reaction between linear and cyclic aryl ether oligomers. The ring-chain equilibrium is much more favorable towards linear polymers. Since little or no ring strain exists in the cyclic system, the transetherification reactions are indiscriminate with regards to cyclic or linear chains and the interchain equilibration is also a facile process during polymerization. This intermolecular transetherification has been demonstrated by using low molecular weight aryl ethers to control the molecular weight of the polymer formed via ring-opening polymerization. © 1996 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 831-843 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The melt stability, shear rate, and temperature dependence of steady-state shear viscosity of molten cyclic aryl ether ketone and thioether ketone oligomers containing the 1,2-dibenzoylbenzene moiety have been investigated. The isothermal chemorheology of the ring-opening polymerization of cyclic oligomers 4 and 9 in the presence of a nucleophilic initiator was also conducted. The cyclic aryl ether ketone oligomers are thermally stable in the melt, and their melt viscosity is several orders of magnitude lower than their high molecular weight linear counterparts. At a given temperature, the steady-state shear viscosity of the molten cyclics initially undergoes shear thinning as the shear rate increases, and once the shear rate is above 10 s-1, the molten cyclic oligomers behave like Newtonian fluids. For the amorphous cyclic oligomers studied, the steady-state shear viscosity at 100 s-1 at a given temperature only depends on their glass transition temperature. The cyclic aryl thioether ketone oligomers are thermally unstable in the melt and undergo ring-opening polymerization in the absence of an initiator to form high molecular weight linear polymers with a concomitant rapid increase in viscosity. The rate of change in viscosity increases with temperature and is promoted by the addition of a catalytic amount of elemental sulfur or a disulfide such as 2,2-dithiobis(benzothiazole). It is hypothesized that the ring-opening polymerization is initiated by the in situ generated thiyl radical(s) and proceeds via a free radical route. © 1996 John Wiley & Sons, Inc.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...