ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Diapycnal mixing  (6)
  • 177-1094; AGE; Color reflectance interval 650-750 nm wavelength; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg177; Ocean Drilling Program; ODP; South Atlantic Ocean  (1)
  • 1
    Publication Date: 2024-01-09
    Keywords: 177-1094; AGE; Color reflectance interval 650-750 nm wavelength; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg177; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 2824 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2143–2152, doi:10.1175/JPO-D-12-027.1.
    Description: Direct measurements of turbulence levels in the Drake Passage region of the Southern Ocean show a marked enhancement over the Phoenix Ridge. At this site, the Antarctic Circumpolar Current (ACC) is constricted in its flow between the southern tip of South America and the northern tip of the Antarctic Peninsula. Observed turbulent kinetic energy dissipation rates are enhanced in the regions corresponding to the ACC frontal zones where strong flow reaches the bottom. In these areas, turbulent dissipation levels reach 10−8 W kg−1 at abyssal and middepths. The mixing enhancement in the frontal regions is sufficient to elevate the diapycnal turbulent diffusivity acting in the deep water above the axis of the ridge to 1 × 10−4 m2 s−1. This level is an order of magnitude larger than the mixing levels observed upstream in the ACC above smoother bathymetry. Outside of the frontal regions, dissipation rates are O(10−10) W kg−1, comparable to the background levels of turbulence found throughout most mid- and low-latitude regions of the global ocean.
    Description: This work was supported by the U.S. National Science Foundation and by the Natural Environment Research Council of the United Kingdom.
    Description: 2013-06-01
    Keywords: Southern Ocean ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 2615-2634, doi:10.1002/2017JC013536.
    Description: In this work, we use realistic isopycnal velocities with a 3-D eddy diffusivity to advect and diffuse a tracer in the Antarctic Circumpolar Current, beginning in the Southeast Pacific and progressing through Drake Passage. We prescribe a diapycnal diffusivity which takes one value in the SE Pacific west of 678W and another value in Drake Passage east of that longitude, and optimize the diffusivities using a cost function to give a best fit to experimental data from the DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) tracer, released near the boundary between the Upper and Lower Circumpolar Deep Water. We find that diapycnal diffusivity is enhanced 20-fold in Drake Passage compared with the SE Pacific, consistent with previous estimates obtained using a simpler advection-diffusion model with constant, but different, zonal velocities east and west of 678W. Our result shows that diapycnal mixing in the ACC plays a significant role in transferring buoyancy within the Meridional Overturning Circulation.
    Description: UK Natural Environment Research Council Grant Numbers: NE/F020252/1 , NE/N018028/1 , NE/J007757/1; US National Science Foundation Grant Numbers: OCE 0622825 , OCE 1232962
    Description: 2018-09-26
    Keywords: Diapycnal mixing ; Ocean circulation ; Tracer experiment ; Ocean model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 259–282, doi:10.1175/JPO-D-11-0194.1.
    Description: This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.
    Description: SW acknowledges the support of the Grantham Institute for Climate Change, Imperial College London. ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1). KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds.
    Description: 2013-08-01
    Keywords: Diapycnal mixing ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1854–1872, doi:10.1175/JPO-D-13-0104.1.
    Description: The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
    Description: This research was funded by the Climate Process Team (CPT) on internal wave–driven mixing throughNSF GrantOCE-0968721. GSC acknowledges support from NSF Grants OCE-0825266 (EXITS), OCE-1029483 (SPAM), and OCE-1029722 (MIXET). LDT and CBW acknowledge support from NSF Grant OCE-0927650. SWand ACNG acknowledge support from NERC Grant NE/G001510/1 (SOFine).
    Description: 2015-01-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spingys, C. P., Garabato, A. C. N., Legg, S., Polzin, K. L., Abrahamsen, E. P., Buckingham, C. E., Forryan, A., & Frajka-Williams, E. E. Mixing and transformation in a deep western boundary current: a case study. Journal of Physical Oceanography, 51(4), (2021): 1205-1222, https://doi.org/10.1175/JPO-D-20-0132.1
    Description: Water-mass transformation by turbulent mixing is a key part of the deep-ocean overturning, as it drives the upwelling of dense waters formed at high latitudes. Here, we quantify this transformation and its underpinning processes in a small Southern Ocean basin: the Orkney Deep. Observations reveal a focusing of the transport in density space as a deep western boundary current (DWBC) flows through the region, associated with lightening and densification of the current’s denser and lighter layers, respectively. These transformations are driven by vigorous turbulent mixing. Comparing this transformation with measurements of the rate of turbulent kinetic energy dissipation indicates that, within the DWBC, turbulence operates with a high mixing efficiency, characterized by a dissipation ratio of 0.6 to 1 that exceeds the common value of 0.2. This result is corroborated by estimates of the dissipation ratio from microstructure observations. The causes of the transformation are unraveled through a decomposition into contributions dependent on the gradients in density space of the: dianeutral mixing rate, isoneutral area, and stratification. The transformation is found to be primarily driven by strong turbulence acting on an abrupt transition from the weakly stratified bottom boundary layer to well-stratified off-boundary waters. The reduced boundary layer stratification is generated by a downslope Ekman flow associated with the DWBC’s flow along sloping topography, and is further regulated by submesoscale instabilities acting to restratify near-boundary waters. Our results provide observational evidence endorsing the importance of near-boundary mixing processes to deep-ocean overturning, and highlight the role of DWBCs as hot spots of dianeutral upwelling.
    Description: CS, ACNG, AF, and EFW were supported by the U.K. Natural Environment Research Council (NERC) Grant NE/K013181/1. ACNG was supported by the Royal Society and Wolfson Foundation. EPA and CEB were supported by NERC Grant NE/K012843/1. CEB was funded by an MSCA grant (No. 798319) from the European Union’s Horizon 2020 program. EPA was supported by NERC Grant NE/N018095/1. SL and KP were supported by U.S. National Science Foundation Grants OCE-1536453 and OCE-1536779. SL acknowledges support of Award NA18OAR4320123 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors, and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce.
    Keywords: Bottom currents ; Diapycnal mixing ; Turbulence ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...