ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP  (3)
  • Serpentinite  (2)
  • Serpentinization  (2)
Collection
Keywords
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 234 (2006): 179-210, doi:10.1016/j.chemgeo.2006.04.011.
    Description: Abyssal peridotite from the 15°20’N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe2+/Fe3+ ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high aSiO2 fluids causing the development of smooth, LREE-enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.
    Description: ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc.
    Keywords: Serpentinization ; Slow spreading ridges ; Abyssal peridotite ; Hydrothermal alteration ; Geochemistry ; Ocean Drilling Program Leg 209
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 43241 bytes
    Format: 1741493 bytes
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q09F26, doi:10.1029/2004GC000744.
    Description: We present first results of a petrographic study of hydrothermally altered peridotites drilled during Ocean Drilling Program (ODP) Leg 209 in the 15°20′N fracture Zone area on the Mid-Atlantic Ridge (MAR). We find that serpentinization is extensive at all drill sites. Where serpentinization is incomplete, phase relations indicate two major reaction pathways. One is reaction of pyroxene to talc and tremolite, and the other is reaction of olivine to serpentine, magnetite, and brucite. We interpret these reactions in the light of recent peridotite-seawater reaction experiments and compositions of fluids venting from peridotite massifs at a range of temperatures. We suggest that the replacement of pyroxene by talc and tremolite takes place at temperatures 〉350°–400°C, where olivine is stable. The breakdown of olivine to serpentine, magnetite, and brucite is favored at temperatures below 250°C, where olivine reacts faster then pyroxene. High-temperature hydrothermal fluids venting at the Logatchev and Rainbow sites are consistent with rapid reaction of pyroxene and little or no reaction of olivine. Moderate-temperature fluids venting at the Lost City site are consistent with ongoing reaction of olivine to serpentine and brucite. Many completely serpentinized peridotites lack brucite and talc because once the more rapidly reacting phase is exhausted, interaction with the residual phase will change fluid pH and silica activity such that brucite or talc react to serpentine. At two sites we see strong evidence for continued fluid flow and fluid-rock interaction after serpentinization was complete. At Site 1268, serpentinites underwent massive replacement by talc under static conditions. This reaction requires either removal of Mg from or addition of Si to the system. We propose that the talc-altered rocks are Si-metasomatized and that the source of Si is likely gabbro-seawater reaction or breakdown of pyroxene deeper in the basement. The basement at Site 1268 is heavily veined, with talc and talc-oxide-sulfide veins being the most common vein types. It appears that the systems evolved from reducing (oxygen fugacity buffered by magnetite-pyrrhotite-pyrite and lower) to oxidizing (dominantly hematite). We propose that this transition is indicative of high fluid flux under retrograde conditions and that the abundance of hematite may relate to the Ca-depleted nature of the basement that prevents near-quantitative removal of seawater sulfate by anhydrite precipitation. At site 1272 we find abundant iowaite partly replacing brucite. While this is the first report of iowaite from a mid-ocean ridge setting, its presence indicates, again, fairly oxidizing conditions. Our preliminary results indicate that peridotite-seawater and serpentinite-seawater interactions can take place under a wider range of temperature and redox conditions than previously appreciated.
    Description: This research used data and/or samples supplied by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc.
    Keywords: Hydrothermal system ; Ocean Drilling Program ; Oceanic crust ; Serpentinite ; Water-rock interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 834562 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Lithos 227 (2015): 1-20, doi:10.1016/j.lithos.2015.03.015.
    Description: Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpe ntinization events represented by different vein generations with distinct trace element contents can be recognized. Measured Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a deacreasing influence of fluid discharge from sediments on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry the slab-flux signature, either because FME were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are characterized by reduced trace element contents with a slightly increased Rb/Cs ratio near 10. This lack of geochemical slab signatures consistently displayed in all late serpentinization stages may indicate that the slab-derived fluids have been completely reset (i.e. the FME excesses were removed) by continued water-rock reaction within the subduction channel. The final stage of diapiric rise of matrix and clasts in the conduits is characterized by brucite-dominated alteration of the clasts from the clast rim inward (independent of the intra-clast fabric relations), which corresponds to re-equilibration with alkaline, low-silica activity fluids in the rising mud.
    Description: This study was funded through a grant of the DFG to WB (BA 1605/5-1).
    Keywords: Serpentinization ; Polyphase alteration ; Mud volcano ; Fluid mobile elements recycling ; Hydrated mantle wedge ; Forearc peridotites ; Subduction zone
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Klein, F., Humphris, S. E., & Bach, W. Brucite formation and dissolution in oceanic serpentinite. Geochemical Perspectives Letters, 16, (2020): 1-5, doi:10.7185/geochemlet.2035.
    Description: Brucite is an important, albeit elusive, hydrous mineral formed during serpentinisation, a vector of Mg from the mantle to seawater, and possibly a significant host of water in oceanic serpentinite. However, the abundance of brucite has not been quantified in oceanic serpentinite and its fate and related chemical fluxes remain uncertain. We used thermal analysis and confocal Raman spectroscopy to determine the abundance and distribution of brucite in serpentinite recovered by seafloor drilling (n = 48) and dredging (n = 22). Almost all (90 %) of the drilled serpentinite samples contained brucite. The brucite contents increased with increasing extent of serpentinisation and constituted up to 15.6 wt. % of the altered rock. In contrast, dredged serpentinites were devoid of brucite and lost 4.0 wt. % MgO on average, which translates to an estimated average annual flux of 1.3 × 1010 mole Mg and about 2 × 1010 mole alkalinity during seafloor weathering of serpentinite globally. Our data suggest that, on average, brucite stores ∼20 % of the water in unweathered serpentinite, making brucite one of the largest water carriers in slow and ultra-slow spreading oceanic lithosphere.
    Description: Support for this project was provided by the Independent Research & Development Program at Woods Hole Oceanographic Institution, the US National Science Foundation (NSF Award # 1059534 and 9986135), and the Special Priority Program 1144 of the German Science Foundation (BA 1605/1-1 and BA 1605/1-2). This research would not have been possible without samples supplied by the Ocean Drilling Program and the Seafloor Samples Laboratory at WHOI.
    Keywords: Serpentinisation ; Serpentinite ; Peridotite ; Brucite ; Seafloor weathering ; Seawater ; Water ; Magnesium ; Alkalinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bach, Wolfgang; Alt, Jeffrey C; Niu, Yaoling; Humphris, Susan E; Erzinger, Jörg; Dick, Henry J B (2001): The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochimica et Cosmochimica Acta, 65(19), 3267-3287, https://doi.org/10.1016/S0016-7037(01)00677-9
    Publication Date: 2024-01-09
    Description: Chemical exchange between oceanic lithosphere and seawater is important in setting the chemical composition of the oceans. In the past, budgets for chemical flux in the flanks of mid-ocean ridges have only considered exchange between basalt and seawater. Recent studies have shown that lower crustal and upper mantle lithologies make up a significant fraction of sea floor produced at the global mid-ocean ridge system. Moreover, the rugged topography of slow spread crust exposing lower crust and upper mantle facilitates prolonged fluid circulation, whereas volcanic ridge flanks are more rapidly isolated from the ocean by a sediment seal. Hence, elemental fluxes during lower crust-seawater reactions must be assessed to determine their role in global geochemical budgets. ODP Hole 735B penetrates more than 1500 m into lower ocean crust that was generated at the very slow spreading Southwest Indian Ridge and later formed the 5-km-high Atlantis Bank on the inside corner high of the Atlantis II Fracture Zone. The gabbroic rocks recovered from Hole 735B preserve a complex record of plastic and brittle deformation and hydrothermal alteration. High-temperature alteration is rare below 600 m below seafloor (mbsf), but the lowermost section of the hole (500-1500 mbsf) has been affected by a complex and multistage low-temperature (〈250°C) alteration history probably related to the tectonic uplift of the basement. This low-T alteration is localized and typically confined to fractured regions where intense alteration of the host rocks can be observed adjacent to veins/veinlets filled with smectite, smectite-chlorite mixed layer minerals, or chlorite +/- calcite +/- zeolite +/- sulfide +/- Fe-oxyhydroxide. We have determined the bulk chemistry and O and Sr isotope compositions of fresh/altered rock pairs to estimate the chemical fluxes associated with low-temperature interaction between the uplifted and fractured gabbroic crust and circulating seawater. The locally abundant low-temperature alteration in crust at Site 735 has significantly changed the overall chemical composition of the basement. The direction of these changes is similar to that defined for volcanic ridge flanks, with low-temperature alteration of gabbroic crust acting as a sink for the alkalis, H2O, C, U, P, 18O, and 87Sr. The magnitudes of element fluxes are similar to volcanic ridge flanks for some components (C, P, Na) but are one or two orders of magnitude lower for others. The flux calculations suggest that low-temperature fluid circulation in gabbro massifs can result in S uptake (3% of riverine sulfate input) in contrast to the S losses deduced for volcanic ridge flanks.
    Keywords: 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Alt, Jeffrey C; Bach, Wolfgang (2001): Data report: Low-grade hydrothermal alteration of uplifted lower oceanic crust, Hole 735B: mineralogy and isotope geochemistry. In: Natland, JH; Dick, HJB; Miller, DJ; Von Herzen, RP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 176, 1-24, https://doi.org/10.2973/odp.proc.sr.176.013.2001
    Publication Date: 2024-01-09
    Description: The mineralogy and stable (O and C) and Sr isotopic compositions of low-temperature alteration phases were determined in Hole 735B gabbroic rocks in order to understand the processes of low-temperature alteration in this uplifted block of lower oceanic crust. Phyllosilicates include smectite (saponite, Mg montmorillonite, and nontronite), chlorite/smectite, chlorite, talc, and serpentine. Other phases include prehnite, albite, K-feldspar, analcite, natrolite, thompsonite, pyrite, and titanite. The low-grade mineral assemblages mainly represent zeolite facies and lower-temperature "seafloor weathering" processes. Phyllosilicates formed over a range of temperatures but may also reflect variable reaction progress. Alteration temperatures were probably somewhat greater below 1300 meters below seafloor. Mineralogy and isotopic data indicate that conditions were mostly reducing and that seawater solutions were rock dominated. Carbonates formed late from cold and generally oxidizing seawater solution, however, as seawater penetrated downward as the result of fracturing and faulting in the uppermost portion of the uplifted crustal block.
    Keywords: 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Niu, Yaoling; Gilmore, Trinity; Mackie, Suzie; Greig, Alan; Bach, Wolfgang (2002): Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In: Natland, JH; Dick, HJB; Miller, DJ; Von Herzen, RP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 176, 1-60, https://doi.org/10.2973/odp.proc.sr.176.011.2002
    Publication Date: 2024-01-09
    Description: We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg + Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca + Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti-rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B. This suggests that a significant mass fraction of more evolved products is needed to balance the high Mg# of the bulk hole. Calculations show that 25%-45% of average Eastern Atlantis II Fracture Zone basalt is needed to combine with 55%-75% of bulk Hole 735B rocks to give a melt of Mg# 0.637, parental to the most primitive Hole 735B cumulate. On the other hand, the parental melt with Mg# 0.637 is far too evolved to be in equilibrium with residual mantle olivine of Fo 〉 0.89. Therefore, a significant mass fraction of more primitive cumulate (e.g., high Mg# dunite and troctolite) is yet to be sampled. This hidden cumulate could well be deep in the lower crust or simply in the mantle section. We favor the latter because of the thickened cold thermal boundary layer atop the mantle beneath slow-spreading ridges, where cooling and crystallization of ascending mantle melts is inevitable. These observations and data interpretation require reconsideration of the popular concept of primary mantle melts and relationships among the extent of mantle melting, melt production, and the composition and thickness of igneous crust.
    Keywords: 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...