ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-08
    Description: In recent years, great efforts have been devoted to the study of the human-induced earthquakes, owing to the effect that these earthquakes can have in terms of seismic hazard. In the past, different authors proposed classification schemes for distinguishing different mechanisms for fluid-induced seismicity generation (see, e.g. McGarr 2000). For example, it has been suggested that when the anthropic activities are responsible for a very small part of the stress field perturbations, the seismic events can be classified as “triggered”, while when the anthropic activities are responsible for the most of stress perturbations driving to the event occurrence, it can be classified as “induced”. In practice, we can rather consider that it may exist a continuum of cases depending on both the characteristics of technological operations and the local stress state.
    Description: Ministero di Sviluppo Economico, Direzione Generale per le Infrastrutture e la Sicurezza dei Sistemi Energetici e Geominerari (DG ISSEG)
    Description: Published
    Description: Bologna
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Keywords: Hazard sismico ; Sismicità indotta ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-12
    Description: Earthquake hypocentral location is perhaps the most classical problem in seismology, the solution of which is often affected by significant uncertainty. In monitoring the effects of underground anthropogenic activities, the earthquake hypocentral location, magnitude, and ground motions are important parameters for managing induced seismicity (as e.g., for operating traffic‐light systems). Such decisional systems define the operative reactions to be enacted once an earthquake, exceeding some magnitude or ground‐motion threshold, occurs within a monitoring volume defined in the neighborhood of a certain anthropogenic underground activity. In this case, a reliable evaluation of the hypocentral location, along with its uncertainty, becomes crucial for rational decision making. In this article, we analyze different sources of uncertainty that can be relevant for the determination of earthquake source locations, and introduce a logic‐tree‐based ensemble modeling approach for framing the problem in a decision‐making context. To demonstrate the performance of the proposed approach, we analyze uncertainties in the location of a seismic event that occurred on 22 July 2019 within the perimeter of the monitoring domain defined in the Val d’Agri oil field (southern Italy). We cast the result as a model ensemble that allows us to obtain samples from a parent distribution that better represents both aleatory and epistemic uncertainties of the earthquake location problem. We find that often‐neglected epistemic uncertainties (i.e., those that arise when considering alternative plausible modeling approaches or data) can be considerably larger and more representative of the state of knowledge about the source location, than the standard errors usually reported by the most common algorithms. Given the consequential repercussions of decision making under uncertainty, we stress that an objective evaluation of epistemic uncertainties associated with any parameter used to support decisional processes must be a priority for the scientific community.
    Description: Centro per il Monitoraggio delle attività di Sottosuolo (CMS).
    Description: Published
    Description: 2423–2440
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: JCR Journal
    Keywords: Earthquake location ; uncertainty ; Traffic light systems ; Decision making ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: In the years between 2010 and 2015 in the Apennines-Calabrian arc boundary, in the Pollino massif, a long seismic sequence took place. The area is subject to Northeast- Southwest extension, which results in a complex system of normal faults striking Northwest-Southeast, nearly parallel to the Apenninic mountain range. The seismic sequence includes more than 6000 earthquakes in the Pollino region, the maximum magnitude recorded is Ml=5.0 and it happened in October 25th 2012 after about two years of ongoing activity; the peculiar temporal evolution of the seismic sequence allows us to catalogue it as a swarm. Here we describe the main seismological characteristics of this seismic sequence and characterise the fracture field of the region. We analyse thousands of seismograms, deriving accurate locations crust velocity model and anisotropic parameters in the crust. These parameters yield clues and insights that may help understanding the physical mechanisms behind the seismic swarm. Since the late 60s-early 70s era seismologists started developing theories that included variations of the elastic properties of the Earth crust and the state of stress and its evolution prior to the occurrence of a large earthquake. Among the others the theory of the dilatancy: when a rock is subject to stress, the rock grains are shifted generating microcracks, thus the rock itself increases its volume. Inside the fractured rock, fluid saturation and pore pressure play an important role in earthquake nucleation, by modulating the effective stress. Thus, measuring the variations of wave speed and of anisotropic parameter in time can be highly informative on how the stress leading to a major fault failure builds up. We systematically look at seismic-wave propagation properties to possibly reveal short-term variations in the elastic properties of the Earth crust. In active fault areas, tectonic stress variation influences fracture field orientation and fluid migration processes, whose evolution over time can be monitored through the measurement of the anisotropic parameters. We analysed waveforms recorded at permanent and temporary stations hold by the Istituto Nazionale di Geofisica e Vulcanologia.
    Description: Published
    Description: 104° Congresso Nazionale della Società Italiana di Fisica - Università della Calabria - dal 17 al 21 settembre 2018
    Description: 2T. Deformazione crostale attiva
    Keywords: Pollino ; seismic sequence ; swarm ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-12
    Description: In this paper we describe the results of an experimental implementation of the recent guidelines issued by the Italian regulatory body for monitoring hydrocarbon production activities. In particular, we report about the pilot study on seismic, deformation, and pore pressure monitoring of the Mirandola hydrocarbon cultivation facility in Northern Italy. This site hosts the Cavone oil field that was speculated of possibly influencing the 2012 ML 5.8 Mirandola earthquake source. According to the guidelines, the monitoring center should analyse geophysical measurements related to seismicity, crustal deformation and pore pressure in quasi real-time (within 24–48 h). A traffic light system would then be used to regulate underground operations in case of detecting significant earthquakes (i.e., events with size and location included in critical ranges). For these 2-year period of guidelines experimentation, we analysed all different kinds of available data, and we tested the existence of possible relationship between their temporal trends. Despite the short time window and the scarce quantity of data collected, we performed the required analysis and extracted as much meaningful and statistically reliable information from the data. We discuss here the most important observations drawn from the monitoring results, and highlight the lessons learned by describing practical issues and limitations that we have encountered in carrying out the tasks as defined in the guidelines. Our main goal is to contribute to the discussion about how to better monitor the geophysical impact of this kind of anthropogenic activity. We point out the importance of a wider seismic network but, mostly, of borehole sensors to improve microseismic detection capabilities. Moreover, the lack of an assessment of background seismicity in an unperturbed situation -due to long life extraction activities- makes it difficult to get a proper picture of natural background seismic activity, which would be instead an essential reference information for a tectonically-active regions, such as Northern Italy.
    Description: “Convenzione tra il comune di San Possidonio e l’Istituto Nazionale di Geofisica e Vulcanologia -I.N.G.V.- per l’attuazione del monitoraggio nella concessione di coltivazione idrocarburi “Mirandola” finalizzata alla messa in opera di attività di monitoraggio di sperimentazione degli indirizzi e linee guida per i monitoraggi ILG ed assunzione funzioni di Struttura Preposta al Monitoraggio di cui all’art. 6 del Protocollo Operativo”
    Description: Published
    Description: 685300
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: JCR Journal
    Keywords: Italian guidelines for monitoring industrial activities ; induced seismicity ; pore pressure monitoring ; deformation monitoring ; seismic monitoring ; 04.06. Seismology ; 05.09. Miscellaneous ; 04.02. Exploration geophysics ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...