ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism  (12)
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (2)
  • palaeomagnetism  (2)
  • 1
    Publication Date: 2020-11-19
    Description: We report on structural and anisotropy of magnetic susceptibility (AMS) results from the Upper Miocene sediments of the Amantea basin, located on the Tyrrhenian coast of the Calabrian Arc (Southern Italy). The stratigraphic succession of the basin is organized in three depositional sequences, separated by two major angular unconformities. Detailed geologica1 mapping and structural analysis demonstrate that the stratigraphic evolution of the Amantea basin is strongly controlled by a synsedimentary extensional tectonic regime. Severa1 NNE-SSW-trending norma1 fault arrays with large scatter in inclination values have been interpreted as due to a domino faulting mechanism, consistent with a WNW-ESE stretching direction. AMS data have been obtained for 13 sites, both in the not constrained in age first depositional sequence (3 sites), and in the upper Tortonian-lower Messinian clays from the second depositional sequence (10 sites). Al1 the sites show a strong magnetic foliation parallel to the bedding planes, and a well defined magnetic lineation subparallel to the local bedding dip directions. The magnetic lineations cluster around a WNW-ESE trend and are parallel to the stretching directions inferred by fault-slip analysis and basin architecture. These new data then confirm the possibility to use the magnetic lineation to map the strain trajectory in weakly deformed extensional sedimentary basins. Paleomagnetic data (from previous studies) show that the whole Calabrian block underwent a 15°-20° clockwise rotation probably in the Pleistocene, postdating the extensional tectonic events which controlled the Amantea basin geometry. Therefore we suggest for the Amantea basin an original E-W-oriented stretching direction, which may be considered as the older extensional direction characterizing the Late Miocene evolution of the southern Tyrrhenian Sea domain.
    Description: Published
    Description: 33-49
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic fabric ; extentional tectonics ; Miocene ; Calabrian Arc ; Italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-19
    Description: We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on-shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low-angle top-to-the-west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse-grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian-early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike-slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn-depositional tectonic activity are marked by well-exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene-Quaternary times: (1) Serravallian low-angle normal faulting; (2) middle Tortonian high-angle syn-sedimentary normal faulting; (3) Messinian-Quaternary high-angle normal faulting. Extensional tectonics controlled the exhumation of high-P/low-T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW-ESE stretching direction (present-day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DSl show a post-Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south-eastward and rotated clockwise as a part of the Calabria-Peloritani terrane.
    Description: Published
    Description: 147-168
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; structural geology ; syn-sedimentary tectonics ; Amantea ; Calabria ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The age of spreading of the Liguro–Provençal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-mthick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provençal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provençal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic "intra-wedge" basins due to the thickening and collapse of the northern Apennine wedge.
    Description: Published
    Description: 231-251
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Paleomagnetism ; Corsica-Sardinia ; Liguro-Provençal Basin ; Back-arc spreading ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from Plio-Pleistocene sedimentary units from Corinth and Megara basins (Peloponnesus, Greece). Paleomagnetic results show that Megara basin has undergone vertical axis CW rotation since the Pliocene, while Corinth has rotated CCW during the same period of time. These results indicate that the overall deformation in central Greece has been achieved by complex interactions of mostly rigid, rotating, fault bounded crustal blocks. The comparison of paleomagnetic results and existing GPS data shows that the boundaries of the rigid blocks in central Greece have changed over time, with faulting migrating into the hanging walls, sometimes changing in orientation. The Megara basin belonged to the Beotia-Locris block in the past but has now been incorporated into the Peloponnesus block, possibly because the faulting in the Gulf of Corinth has propagated both north and east. Paleomagnetic and GPS data from Megara and Corinth basins have significant implications for the deformation style of the continental lithosphere. In areas of distributed deformation the continental lithosphere behaves instantaneously like a small number of rigid blocks with well-defined boundaries. This means that these boundaries could be detected with only few years of observations with GPS. However, on a larger time interval the block boundaries change with time as the active fault moves. Paleomagnetic studies distinguishing differential rotational domains provide a useful tool to map how block boundaries change with time.
    Description: Published
    Description: 1-15
    Description: reserved
    Keywords: Paleomagnetism ; Greece, block rotations ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1167012 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The present-day arcuate shape of the Calabrian Arc has been accomplished during Neogene and Early Pleistocene by large and opposite vertical axis rotations along the two arms of the Arc. Clockwise (CW) rotations have been systematically registered in Sicily and Calabria, whereas counterclockwise (CCW) rotations were measured in Southern Apennines. Such opposite vertical axis rotations ceased in the uppermost part of the Lower Pleistocene (about 1 Ma ago) along almost the entire Calabrian Arc and are not observed in the present-day GPS velocity field. The end of the Calabrian Arc bending during the Quaternary marks a decrease in the efficiency of the tectonic processes related to the long-lived subduction of the Ionian slab, which caused the halting of the back-arc opening in the Southern Tyrrhenian Sea.
    Description: Published
    Description: 259-274
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Calabrian Arc ; subduction ; paleomagnetism ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We report on the anisotropy of magnetic susceptibility (AMS) analyses of fine-grained sediments deposited during the Messinian in foredeep basins at the front of the northern Apenninic chain. The data refer to 32 sampling sites, mostly distributed in the fine-grained intervals of the Laga and Colombacci formations, extending along the belt for a total length of about 300 km. Rock magnetism analyses indicate that the magnetic susceptibility and its anisotropy are in most cases dominated by the paramagnetic minerals of the clay matrix. In order to delineate the contribution of the ferrimagnetic fraction to the overall susceptibility fabric, the anisotropy of the anhysteretic remanent magnetisation was investigated at some representative sites. The magnetic fabric of the studied sediments mostly reflects the effects of compaction, showing a predominant magnetic foliation parallel to the bedding piane. At all the sites a well distinct magnetic lineation was also found, which is parallel to the fold axes and thrust fronts, both at local and regional scales. This feature is maintained in sequences that differ for sedimentological character and age, implying that the magnetic lineation was produced by a mild tectonic overprint of the primary sedimentary-compactional fabric. The relationship between the magnetic lineation trends and the vertical axis rotations detected by Speranza et al. [Speranza, F., Sagnotti, L.. Mattei, M., 1997. J. Geophys. Res. 102, 3153-3166] indicates that the magnetic lineation formed during the compressive phases of the Messinian-early Pliocene, when the Apenninic front was almost rectilinear and oriented N32O°.
    Description: Published
    Description: 73-93
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic anisotropy ; rock strain ; northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present the results of a paleomagnetic study carried out on 32 sites from mainly Messinian clayey sediments distributed throughout the external Umbria-Marche-Romagna Arc (UMRA). These data, together with published results from coeval sediments, demonstrate that this arc is an orocline in its central northern sector. Bending, not well constrained in time, was due to about 15° clockwise rotations of the central part of this arc and to counterclockwise rotations farther north. In this latter area, post-Messinian counterclockwise rotations are of the same amplitude as those calculated for some classic Mesozoic paleomagnestic sections in northern Umbria, suggesting a Plio-Pleistocene age for the rotations reported from the older sequences.
    Description: Published
    Description: 3153-3166
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonic rotations ; arcuate belt ; northern Apennines ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-03
    Description: We report on a palaeomagnetic study of upper Miocene sediments from the Amantea basin, located on the Tyrrhenian coast of Calabria. The magnetic mineralogy is dominated by greigite and subordinate magnetite in the Tortonian-Messinian clays (ten sites), and by hemoilmenite and magnetite in the underlaying sands and volcanic ashes (three sites), which have not been dated. Data from the Tortonian, Messinian clays pass both a reversal and a fold test, and define a 19° ± 11° clockwise rotation (with respect to the geocentric axial dipole field direction) for the whole basin. The variable amounts of westward declinations observed in the underlaying sands and volcanic ashes can be due to (1) a large counterclockwise rotation episode occurring before the clockwise rotation, (2) the effects of a transitional geomagnetic field in these rapidly deposited sediments, or (3) the observed complex magnetic mineralogy. The new results, when compared with previous palaeomagnetic studies from other Calabrian basins, show that the Neogene drifting of the Calabro-Peloritan block from the eastern margin of Sardinia to the present-day position was accompained by a (probably Pleistocene) 15-20° rigid clockwise rotation recorded in both the Tyrrhenian and Ionian margins. This tectonic regime is shown to be very different from the one observed by previous studies in the northern Tyrrhenian domain, where large rotation associated with thrust sheet activity in the external Apennines were coeval with the onset of an irrotational extentional regime in the Tuscan and Latium Tyrrhenian margins. Palaeomagnetism thus confirms the significant geodynamical differences between the southern and northern Tyrrhenian Sea spreadings.
    Description: Published
    Description: 327-334
    Description: JCR Journal
    Description: reserved
    Keywords: Calabria ; Neogene ; palaeomagnetism ; tectonics ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: JCR Journal
    Description: open
    Keywords: Paleomagnetic analyses ; Central Appennines ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-24
    Description: In this study, we report an extensive paleomagnetic study (76 sites) carried out in the Alborz Mts. (northern Iran), with the aim of reconstructing the rotation history and the origin of curvature of this orogenic chain. The analyzed deposits are the sedimentary successions of the Upper Red Formation (Miocene), Lower Red Formation (Oligocene) and Eocene clastic units. Paleomagnetic results indicate that the Alborz Mts. can be considered a secondary arc that originated as a linearmountain belt that progressively acquired its present day curvature through opposite vertical axis rotations along its strike. The curvature of the arc was entirely acquired after the middlelate Miocene,which is the age of the youngest investigated sediments (Upper Red Formation). Overall, our paleomagnetic data indicate that the Alborz Mts. can be considered an orocline. Our results define, for the first time, the rotational history of the entire Alborz curved mountain belt, and enable us to reconstruct the paleogeographic and tectonic evolution of northern Iran in the framework of Arabia-Eurasia continental deformation. The kinematics inferred by the pattern of paleomagnetic rotations is at odds with the present day kinematics of northern Iran, characterized by the westward extrusion of the South Caspian block, and by a left lateral shear between Central Iran and the central and western sectors of the Alborz Mts. By integrating paleomagnetic datawith stratigraphic, thermochronological, structural and GPS information,we propose that the initiation of South Caspian subduction and the activation of westward extrusion of South Caspian block occurred diachronously and that the initiation of the present-day kinematics of northern Iran was quite recent (Lower Pleistocene, b2 Ma).
    Description: Published
    Description: 13-28
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism Alborz Iran orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...