ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-03
    Description: Abstract: The dynamic of groundwater systems feeding several springs of the Sibillini Mountains was deeply affected by nine Mw 5.0÷6.5 seismic events occurred in central Italy starting from August 2016. The strongest shock occurred on October 30th 2016 about 5 km NNE of Norcia Town, 9 km below the surface, as a result of upper crust normal faulting on the nearly 30 km-long Mt Vettore - Mt Bove fault system, a NW-SE trending, SW-dipping fault system outcropping on the western slope of Mt Vettore, the highest peak of Sibillini Mountains. Soon after this event, a general increase of springs and rivers discharge and groundwater levels was observed both in the Visso and Norcia areas, west of the Sibillini Mountains. In the Visso area the hydrogeological changes due to the seismic sequence exhausted in the 2019, while nowadays both discharges and groundwater levels are still higher than before in the Norcia area. Discharge data of the main springs located east, south-east of the Sibillini Mountains were analysed to verify whether the general increase observed on the western side was associated to a decrease on the eastern and southern-east area. The results show that the springs located on the eastern side and southern-east side of Mt Vettore experienced a significant long-term discharge decrease. In this preliminary work, the analysis of the historical discharge series of the Pescara di Arquata spring (SE of Mt Vettore), and its relationship with the Standard Precipitation Index (SPI) shows that the very low discharge values recorded during the post-seismic period are not associated with SPI as low as documented in the past for similar discharges. Moreover, the stable isotopic composition of Pescara di Arquata water during the post-earthquake period is slightly different from that measured before the seismic events; this suggests that a lower amount of water having more enriched isotopic δ18O content reaches the spring after the seismic sequence. These aspects seem to indicate that groundwater circulation in the southern-east area of Sibillini Mountains has been affected by the 2016-2017 seismic sequence
    Description: Published
    Description: 19-25
    Description: 4T. Sismicità dell'Italia
    Description: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: earthquake, hydrogeology, spring discharge, SPI, Central Italy. ; 03.02. Hydrology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-17
    Description: The interaction between fluids and tectonic structures such as fault systems is a muchdiscussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.
    Description: Published
    Description: 1499
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: tracer tests; isotope hydrology; faults; carbonate aquifers; earthquakes; Mts. Sibillini; central Italy ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-16
    Description: Carbonate aquifers are characterised by strong heterogeneities and their modelling is often a challenging aspect in hydrological studies. Understanding carbonate aquifers can be more complicated in the case of strong seismic events which have been widely demonstrated to influence groundwater flow over wide areas or on a local scale. The 2016–2017 seismic sequence of Central Italy is a paradigmatic example of how earthquakes play an important role in groundwater and surface water modifications. The Campiano catchment, which experienced significant discharge modifications immediately after the mainshocks of the 2016–2017 seismic sequence (Mmax = 6.5) has been analysed in this study. The study area is within an Italian national park (Sibillini Mts.) and thus has importance from a naturalistic and socio-economic standpoint. The research strategy coupled long-period artificial tracer tests (conducted both before and after the main earthquakes), geochemical and discharge analyses and isotope hydrology with hydrogeological cross-sections. This study highlights how the seismic sequence temporarily changed the behaviour of the normal faults which act predominantly as barriers to flow in the inter-seismic period, with water flow being normally favoured along the fault strikes. On the contrary, during earthquakes, groundwater flow can be significantly diverted perpendicularly to fault-strikes due to co-seismic fracturing and a consequent permeability increase. The interaction between groundwater and surface water is not only important from the point of view of scientific research but also has significant implications at an economic and social level.
    Description: Published
    Description: 97
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...