ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring  (5)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: The GEOSTAR is a technological and scientific project aimed at the realisation of an autonomous benthic observatory able to perform long-term, continuous and integrated geophysical and environmental measurements in deep seafloors. The observatory is conceived to be a node of existing and future geophysical monitoring networks, making possible their extension offshore. The GEOSTAR observatory prototype hosts sensors for seismic, geomagnetic, gravimetric, geochemical and oceanographic researches up to abyssal depths (4000 m). The first 1-year scientific mission is foreseen within the end of the millennium in the abyssal plain (3400 m) of the Southern Tyrrhenian Sea, where key information about the geodynamics and oceanography of the whole Mediterranean basin can be acquired.
    Description: Published
    Description: 175-183
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor observatories ; Geophysics ; Water geochemistry ; Physical oceanography ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: The “NEutrino Mediterranean Observatory - Submarine Network 1” (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100 m water depth, 25 km from the harbour of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the “European Multidisciplinary Seafloor and water column Observatory” (EMSO, http://www.emso-eu.org), one of the incoming European large-scale research infrastructures included in the Roadmap of the “European Strategy Forum on Research Infrastructures” (ESFRI, http://cordis.europa.eu/esfri/roadmap.htm) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to Marine Ecosystems, Climate Change and Geo-hazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian funding and to the EC project “European Seas Observatory NETwork - Network of Excellence” (ESONET-NoE, 2007-2011) that funded the “Listening to the Deep Ocean - Demonstration Mission” (LIDO-DM) and a technological interoperability test (http://www.esonet-emso.org/). NEMOSN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydroacoustic, bio-acoustic measurements. Scientific objectives include studying seismic signals, tsunami generation and warnings, its hydroacoustic precursors, and ambient noise characterisation in terms of marine mammal sounds, environmental and anthropogenic sources. NEMO-SN1 is also an important test-site for the construction of the “Kilometre-Cube Underwater Neutrino Telescope” (KM3NeT, http://www.km3net.org/), another large-scale research infrastructure included in the ESFRI Roadmap based on a large volume neutrino telescope. The description of the observatory and its most recent implementations is presented. On 9th June, 2012 NEMO-SN1 was successfully deployed and is working in real-time.
    Description: Published
    Description: 358 - 374
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: NEMO-SN1 cabled observatory ; Geo-hazards ; Bio-acoustics ; High-energy astrophysics ; EMSO ; KM3NeT ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: NEMO-SN1, located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily Island (Southern Italy) at 2100 m water depth, 25 km from the harbour of the city of Catania, is a prototype of a cabled deep-sea multiparameter observatory and the first operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of EMSO (European Multidisciplinary Seafloor Observatory, http://emso-eu.org), one of the incoming European large-scale research infrastructure included since 2006 in the Roadmap of the ESFRI (European Strategy Forum on Research Infrastructures, http://cordis.europa.eu/esfri/roadmap.htm), which will specifically address long-term monitoring of environmental processes related to Marine Ecosystems, Climate Change and Geo-hazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian resources and to the EC project ESONET-NoE (European Seas Observatory NETwork - Network of Excellence, 2007-2011) that funded the LIDO-DM (Listening to the Deep Ocean - Demonstration Mission) and a technological interoperability test (http://www.esonet-emso.org/esonet-noe/). NEMO-SN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydro-acoustic, bioacoustic measurements specifically related to earthquakes and tsunamis generation and ambient noise characterisation in term of marine mammal sounds, environmental and anthropogenic sources. A further main feature of NEMO-SN1 is to be an important test-site for the construction of KM3NeT (Kilometre-Cube Underwater Neutrino Telescope, http://www.km3net.org/), another large-scale research infrastructure included in the ESFRI Roadmap constituted by a large volume neutrino telescope. The description of the observatory and the most recent data acquired will be presented and framed in the general objectives of EMSO.
    Description: Published
    Description: Tokio, 5-8 April 2011
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: restricted
    Keywords: NEMO-SN1 cabled observatory ; Geo-hazards ; Bio-acoustics ; High-energy astrophysics ; EMSO ; KM3NeT ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise.
    Description: Published
    Description: e0141838
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Whales ; Bioacoustics ; Background noise (acoustics) ; Acoustic signals ; Sperm whales ; Vocalization ; Acoustics ; Data acquisition ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-24
    Description: The Gulf of Cadiz is one of two the test sites chosen for the demonstration of the ESONET - LIDO Demonstration Mission (DM) [1], which will establish a first nucleus of regional network of multidisciplinary sea floor observatories. The Gulf of Cadiz is a highly populated area, characterized by tsunamigenic sources, which caused the devastating earthquake and tsunamis that struck Lisbon in 1755. The seismic activity is concentrated along a belt going from this region to the Azores and the main tsunamigenic tectonic sources are located near the coastline. In the framework of the EU - NEAREST project [2] the GEOSTAR deep ocean bottom multi-parametric observatory was deployed for a one year mission off cape Saint Vincent at about 3200 m depth. GEOSTAR was equipped with a set of oceanographic, seismic and geophysical sensors and with a new tsunami detector prototype. In November 2009 the GEOSTAR abyssal station equipped with the tsunami prototype was redeployed at the same site on behalf of NEAREST and ESONET - LIDO DM. The system is able to communicate from the ocean bottom to the land station via an acoustic and satellite link. The abyssal station is designed both for long term geophysical and oceanographic observation and for tsunami early warning purpose. The tsunami detection is performed by two different algorithms: a new real time dedicated tsunami detection algorithm which analyses the water pressure data, and a seismic algorithm which triggers on strong events. Examples of geophysical and oceanographic data acquired by the abyssal station during the one year mission will be shown. The development of a new acoustic antenna equipped with a stand alone and autonomous acquisition system will allow the recording of marine mammals and the evaluation of environmental noise. References
    Description: EGU
    Description: Published
    Description: Vienna
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: open
    Keywords: Seafloor observatory ; ESONET ; NEAREST ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...