ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-30
    Description: Regular automatic recordings of the time series of the magnetic field, together with routine manual absolute measurements for establishing dynamic baselines at Lampedusa Island—south of Sicily—Italy (geographic coordinates 35°31′N; 12°32′E, altitude 33 m a.s.l.), show a signature of very low electromagnetic noise. The observatory (provisional IAGA code: LMP) lays inside a restricted and remote wildlife reserve, far away from the built-up and active areas of the island, which at present is the southernmost location of the European territory for such observations. The availability of high-quality data from such site, whose survey started in 2005, is valuable for filling the spatial gap due to the lack of observatories in the whole south Mediterranean and North African sectors. We compare observations at Lampedusa, in both time and frequency domains, with those at the other Italian observatories (Castello Tesino and Duronia-L’Aquila), operating since the 1960s of last century, allowing us to report even the secular variation. Using data recorded in the last few years, we investigate higher frequency variations (from diurnal to Pc3-4 pulsations) in order to magnetically characterize the Italian territory and the local response to external forcing. In particular, we present a characterization in terms of diurnal variation and its seasonal dependence for the three observatories. This latter feature is in good agreement with a geomagnetic Sq-model, leading us to speculate about the position of the north Sq-current system vortex and its seasonal displacement with respect to the geographic positions of the observatories. We also study the geomagnetic individual response to intense space weather events by performing Superposed Epoch Analysis (SEA), with an ad-hoc significance test. Magnetic responses in the Ultra Low Frequency range (ULF) from spectral, local Signal-to-Noise Ratio (SNR) analyses under different local time, and polarization rates are computed. These latter studies lead us to search for possible signatures of magnetic field line resonances during intense space weather events, using cross-phase multi-observatory analysis, revealing the promising detection capability of such technique even at low latitudes. The geomagnetic observatories prove to be important points of observation for space weather events occurring at different spatial and time scales, originating in both upstream and ionospheric regions, here analyzed by several well-established methodologies and techniques. The quiet environmental site of LMP, providing high-quality geomagnetic data, allows us such investigations even at inner Earth’s magnetospheric shell.
    Description: This work is supported by INGV-MUR Project Pianeta Dinamico—The Working Earth (CUP D53J19000170001), theme 3 SERENA, https://progetti.ingv.it/it/pianeta-dinamico, accessed on 4 August 2021.
    Description: Published
    Description: 3111
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Secular variation ; Space Weather ; Field Line Resonance ; ULF waves ; Sun-Earth interaction ; 04.05. Geomagnetism ; 01.03. Magnetosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-01
    Description: On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state of the solar wind before and during the geomagnetic storm, as well as the response of the plasmasphere–ionosphere–thermosphere system in the European sector. To investigate the longitudinal differences, the ionosphere–thermosphere response of the American sector was also analyzed. The plasmasphere dynamics was investigated through field line resonances detected at the European quasi-Meridional Magnetometer Array, while the ionosphere was investigated through the combined use of ionospheric parameters (mainly the critical frequency of the F2 layer, foF2) from ionosondes and Total Electron Content (TEC) obtained from Global Navigation Satellite System receivers at four locations in the European sector, and at three locations in the American one. An original method was used to retrieve aeronomic parameters from observed electron concentration in the ionospheric F region. During the analyzed interval, the plasmasphere, originally in a state of saturation, was eroded up to two Earth’s radii, and only partially recovered after the main phase of the storm. The possible formation of a drainage plume is also observed. We observed variations in the ionospheric parameters with negative and positive phase and reported longitudinal and latitudinal dependence of storm features in the European sector. The relative behavior between foF2 and TEC data is also discussed in order to speculate about the possible role of the topside ionosphere and plasmasphere response at the investigated European site. The American sector analysis revealed negative storm signatures in electron concentration at the F2 region. Neutral composition and temperature changes are shown to be the main reason for the observed decrease of electron concentration in the American sector.
    Description: INGV-MUR project Pianeta Dinamico—The Working Earth (CUP D53J19000170001, law 145/2018), theme 3 The Solar wind–Earth’s magnetosphere Relationships and their Effects on ioNosphere and upper and lower Atmosphere (SERENA)
    Description: Published
    Description: 5765
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: magnetosphere ; ionosphere ; plasmasphere ; geomagnetic storm ; thermosphere ; solar wind–magnetosphere interaction ; 04.05. Geomagnetism ; 01.03. Magnetosphere ; 01.02. Ionosphere ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...