ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-19
    Description: Biomass is a spaceborn polarimetric P-band (435 MHz) synthetic aperture radar (SAR) in a dawn–dusk low Earth orbit. Its principal objective is to measure biomass content and change in all the Earth’s forests. The ionosphere introduces the Faraday rotation on every pulse emitted by low-frequency SAR and scintillations when the pulse traverses a region of plasma irregularities, consequently impacting the quality of the imaging. Some of these effects are due to total electron content (TEC) and its gradients along the propagation path. Therefore, an accurate assessment of the ionospheric morphology and dynamics is necessary to properly understand the impact on image quality, especially in the equatorial and tropical regions. To this scope, we have conducted an in-depth investigation of the significant noise budget introduced by the two crests of the equatorial ionospheric anomaly (EIA) over Brazil and Southeast Asia. This paper is characterized by a novel approach to conceive a SAR-oriented ionospheric assessment, aimed at detecting and identifying spatial and temporal TEC gradients, including scintillation effects and traveling ionospheric disturbances, by means of Global Navigation Satellite Systems ground-based monitoring stations. The novelty of this approach resides in the customization of the information about the impact of the ionosphere on SAR imaging as derived by local dense networks of ground instruments operating during the passes of Biomass spacecraft. The results identify the EIA crests as the regions hosting the bulk of irregularities potentially causing degradation on SAR imaging. Interesting insights about the local characteristics of low-latitudes ionosphere are also highlighted.
    Description: Published
    Description: 6412-6424
    Description: 2A. Fisica dell'alta atmosfera
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-10
    Description: In the framework of space weather, the understanding of the physical mechanisms responsible for the generation of ionospheric irregularities is particularly relevant for their effects on global positioning and communication systems. Ionospheric equatorial plasma bubbles are one of the possible irregularities. In this work, using data from the ESA Swarm mission, we investigate the scaling features of electron density fluctuations characterizing equatorial plasma bubbles. Results strongly support a turbulence character of these structures and suggest the existence of a clear link between the observed scaling properties and the value of the Rate Of change of electron Density Index (RODI). This link is discussed, and RODI is proposed as a reliable proxy for the identification of plasma bubbles.
    Description: This research received financial support from European Space Agency (ESA contract N. 4000125663/18/I-NB-“EO Science for Society Permanently Open Call for Proposals EOEP-5 BLOCK4” (INTENS)) and from the Italian MIUR-PRIN grant 2017APKP7T on “Circumterrestrial Environment: Impact of Sun–Earth Interaction”.
    Description: Published
    Description: 759
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Turbulence ; Electron density irregularities ; Equatorial topside ionosphere ; Swarm constellation ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: The present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE 〈 50 nT) and active (AE 〉 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude— magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy
    Description: Published
    Description: 6183
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Turbulence ; High-latitude ionosphere ; electron density fluctuations ; Swarm constellation ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-01
    Description: This paper is a final review of the Simplified Ionospheric Regional Model (SIRM) devel- oped as a prototype in the early 1990s and improved in the following years. By means of an algorithm based on the Fourier synthesis, the SIRM model in its prototype version pro- vides predicted monthly median values of the main ionospheric characteristics such as: the ordinary wave critical frequencies (foE, foF1, and foF2) of the E, F1, and F2 ionospheric layers; the lowest virtual height (h’F) of the ordinary trace of the F region; the obliquity factor for a distance of 3000 km (M(3000)F2). Instead, the improved version focuses only on foF2 and M(3000)F2. The SIRM model has been largely employed in the framework of different international research projects as the climatological reference to output foF2 and M(3000)F2 monthly median predictions, but in its SIRMUP version is used also as a nowcasting model and as an intermediate step of complex procedures for a near real- time three-dimensional representation of the ionospheric electron density. In this regard, some results provided by both SIRM and SIRMUP for telecommunication applications are shown. Moreover, the mathematical treatment concerning both the phase correction of the Fourier synthesis and the fundamental steps carried out to define the SIRM algorithm in its final version, never published so far, will be described in detail in dedicated Appendices. Finally, for the first time the SIRM code is now downloadable for the benefit of users.
    Description: Published
    Description: 1143-1178
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: SIRM ; SIRMUP ; foF2 ; M(3000)F2 ; Regional modelling ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: We investigated the average polar patterns of ionospheric electron density and the corresponding patterns of scaling features as a function of interplanetary magnetic field orientation. The focus is on the Northern Hemisphere using electron density data recorded on-board ESA Swarm A satellite. The first- and second-order scaling exponents have been evaluated by means of the -order structure functions. We used electron density measurements over a period of 15 months from April 1, 2014 to June 30, 2015, which corresponds to the maximum of solar cycle 24 and which is characterized by an average value of the solar radio flux (F10.7) index equal to (140+/- 30) sfu. Electron density, first- and second-order scaling exponents have been mapped and discussed for four main IMF orientations provided by Bx and By components under conditions of high solar activity. Large spatial changes of the second-order scaling exponent pattern are observed with a steepening of the associated spectral exponent in correspondence with the nightside polar cap trailing edge. Intermittency, defined as the departure from linearity of the dependence of scaling exponents on moment order q, is also evaluated finding that it is generally higher near the equatorward boundary of the auroral oval than elsewhere. On the whole, the found patterns of the electron density first- and second-order scaling exponents suggest the occurrence of turbulence at the high latitudes.
    Description: Published
    Description: 105531
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Polar ionosphere ; Turbulence ; Scaling feature ; Space weather ; Swarm satellite ; electron density ; 01.02. Ionosphere ; 01.03. Magnetosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-01
    Description: Since 1988 the Upper Atmosphere Physics unit of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) has provided maps of Maximum Usable Frequency (MUF) and skip distance over a European area extending in latitude from 34°N to 60°N and in longitude from 5°W to 40°E. Anyhow, these maps suffer the following restrictions: (1) they are provided with two months in advance and so they are not suitable for space weather purposes; (2) they are represented with few isolines; (3) they are centred only on Rome (41.8°N, 12.5°E) and generated in black and white; (4) MUF are calculated with a really simple algorithm. In order to overcome these restrictions, a new software tool was developed to get climatological maps (up to three months in advance) and quasi real-time maps, (nowcasting) limited to the sector extending in latitude from 34°N to 48°N and in longitude from 5°E to 20°E, which includes the whole Italian territory. In order to achieve a greater accuracy, MUF and skip distance maps are generated combining the Simplified Ionospheric Regional Model (SIRM) and its UPdated version (SIRMUP) with the Lockwood algorithm. Climatological maps are generated every hour on the basis of the predicted 12-months smoothed sunspots number. Nowcasting maps are generated every 15 min exploiting foF2 and M(3000)F2 data autoscaled at the ionospheric stations of Rome and Gibilmanna (37.6°N, 14.0°E). Nowcasting maps constitute the most important novelty because they let High Frequency (HF) users know in quasi real-time the radio propagation conditions over Italy. This turns out to be very valuable in terms of reliable radio links, especially in case of adverse space weather events.
    Description: Published
    Description: 243-258
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Maximum usable frequency ; Skip distance ; Lockwood formula ; SIRM ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-23
    Description: Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)). The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup (V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors. Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one.
    Description: Published
    Description: 2569-2584
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: electron density mapping ; IRI model ; Ionospheric ray tracing ; Simulated quasi vertical ionograms ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-29
    Description: This work describes several important improvements made to the International Reference Ionosphere UPdate (IRIUP) method, and a careful validation of its performances under disturbed conditions. The IRI UP method has been improved developing an algorithm capable to properly filter wrongly autoscaled ionosonde data to be assimilated, avoiding the use of these in the assimilation process. Furthermore, the preliminary quality check used to choose the variogram model in the Universal Kriging method has been replaced with a new quality check routine (NQCR), based on statistical tests carried out using the variables Q 1 , Q 2 , and cR, built on variogram’s residuals. NQCR objectively identifies the best variogram model from which to get more reliable effective indices maps to be ingested in the IRI model to obtain updated foF2 and hmF2 maps. IRI UP has been applied on 30 different time intervals, between January 1, 2004, and December 31, 2016, characterized by moderate, strong, and severe geomagnetic conditions, over the European region. A statistical comparison between IRI UP and IRI at the truth sites located at Fairford (51.7°N, 1.5°W, UK) and San Vito (40.6°N, 17.8°E, Italy), for foF2 and hmF2, has been performed. From the statistical validation clearly emerges how IRI UP, for foF2, performs significantly better than IRI, for each of the 30 geomagnetic storms considered. Regarding hmF2, IRI UP performances are lower than those for foF2, although still better than IRI ones. In the light of the results achieved in this investigation, the IRI UP method represents an interesting approach to Space Weather forecast in the ionospheric domain.
    Description: Published
    Description: id 180
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: IRI UP ; Universal Kriging ; Ionospheric data assimilation ; Nowcasting maps ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-09
    Description: A recently proposed self-consistent approach to the analysis of thermospheric and ionospheric long-term trends has been applied to Rome ionosonde summer noontime observations for the (1957–2015) period. This approach includes: (i) a method to extract ionospheric parameter long-term variations; (ii) a method to retrieve from observed foF1 neutral composition (O, O2, N2), exospheric temperature, Tex and the total solar EUV flux with λ〈1050 Å; and (iii) a combined analysis of the ionospheric and thermospheric parameter long-term variations using the theory of ionospheric F-layer formation. Atomic oxygen, [O] and [O]/[N2] ratio control foF1 and foF2 while neutral temperature, Tex controls hmF2 long-term variations. Noontime foF2 and foF1 long-term variations demonstrate a negative linear trend estimated over the (1962–2010) period which is mainly due to atomic oxygen decrease after ∼1990. A linear trend in (δhmF2)11y estimated over the (1962–2010) period is very small and insignificant reflecting the absence of any significant trend in neutral temperature. The retrieved neutral gas density, ρ atomic oxygen, [O] and exospheric temperature, Tex long-term variations are controlled by solar and geomagnetic activity, i.e. they have a natural origin. The residual trends estimated over the period of ∼5 solar cycles (1957–2015) are very small (〈0.5% per decade) and statistically.
    Description: Published
    Description: A21
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: long-term trend ; ionosphere ; thermosphere ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-16
    Description: This paper considers a dataset of ionograms recorded by the CADI ionosonde installed at Sao José dos Campos (SJC; 23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, to compare two autoscaling systems: Autoscala, developed by the Istituto Nazionale di Geofisica e Vulcanologia, and the UDIDA-scaling, developed by the Universidade do Vale do Paraı´ba. The analysis, focused on the critical frequency of the F2 layer, foF2, shows that the two systems work differently. The UDIDA-scaling gives always a value of foF2 as output, regardless of the presence of the ionogram trace and its definition, while Autoscala tends to reject ionograms for which the digital information is considered insufficient. As a consequence, the UDIDA-scaling can autoscale more foF2 values than Autoscala, but Autoscala can discard a larger number of ionograms for which the trace is unidentifiable. Discussions are made on the accuracy of the foF2 values given as output, as well as on the main shortcomings characterizing the two systems.
    Description: Published
    Description: 173–187
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Description: open
    Keywords: Ionogram ; Ionosonde ; Low-latitude ionosphere ; Critical frequency foF2 ; Automatic scaling ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...