ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques  (2)
  • Acoustics  (1)
  • METEOROLOGY AND CLIMATOLOGY  (1)
  • 1
    Publication Date: 2017-04-04
    Description: This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296 Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time data and providing data users measurement uncertainties. These value added data also served for calibration and validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC), other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications.
    Description: Published
    Description: 221-234
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Ionosphere ; monitoring ; data validation ; monitoring techniques ; campaigns ; dissemination ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.05. Collections
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status. html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An «editing process» is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: ionograms ; electron density profiles ; satellite orbits altitude ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 117041 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: This paper compares the observed behavior of the (F2) layer of the ionosphere at Millstone Hill and Hobart with calculations from the field line interhemispheric plasma (FLIP) model for solar maximum, solstice conditions in 1990. During the study period the daily F(sub 10.7) index varied by more than a factor of 2 (123 to 280), but the 81-day mean F(sub 10.7) (F(sub 10.7 A)) was almost constant near 190. Calculations were performed with and without the effects of vibrationally excited N2 (N(sup *)(sub 2) which affects the loss rate of atomic oxygen ions. In the case without N(sup *)(sub 2) there is generally good agreement between the model and measurement for the daytime, peak density of the F region (NmF2). Both the model and the measurement show a strong seasonal anomaly with the winter noon densities a factor of 3 to 4 greater than the summer noon densities at Millstone Hill and a factor of 2 greater at Hobart. The seasonal anomaly in the model is caused by changes in the neutral composition as given by the mass spectrometer and incoherent scatter (MSIS) 86 neutral density model. There is generally little or no increase in the observed noon NmF2 as a function of daily F(sub 10.7) except at Millstone Hill in winter. In contrast to the generally good agreement between model and data at noon, the model badly underestimates the density at night at Millstone Hill at all seasons. At Hobart the model reproduces the nighttime density variations well in both winter and summer. The international reference ionosphere (IRI) model generally provides a good representation of the average behavior of noon NmF2 and hmF2 but because the data show a lot of day-to-day variability, there are often large differences. The FLIP model is able to reproduce this variability when hmF2 is specified. The IRI model peak densities are better than the FLIP densities at night, but the IRI model does not represent the Millstone Hill summer data very well at night in 1990.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A8; p. 15,005-15,016
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: Future space missions like the Jupiter Icy Moons Orbiter (JIMO) planned to orbit Callisto, Ganymede, and Europa can fully utilize a variable power radio sounder instrument. Radio sounding at 1 kHz to 10 MHz at medium power levels (10 W to kW) will provide long-range magnetospheric sounding (several Jovian radii) like those first pioneered by the radio plasma imager instrument on IMAGE at low power (less than l0 W) and much shorter distances (less than 5 R(sub E)). A radio sounder orbiting a Jovian icy moon would be able to globally measure time-variable electron densities in the moon ionosphere and the local magnetospheric environment. Near-spacecraft resonance and guided echoes respectively allow measurements of local field magnitude and local field line geometry, perturbed both by direct magnetospheric interactions and by induced components from subsurface oceans. JIMO would allow radio sounding transmissions at much higher powers (approx. 10 kW) making subsurface sounding of the Jovian icy moons possible at frequencies above the ionosphere peak plasma frequency. Subsurface variations in dielectric properties, can be probed for detection of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.
    Keywords: Acoustics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...