ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP  (3)
  • Ocean Drilling Program; ODP  (3)
  • -; 318-U1359C; Angle of 95% confidence; Declination; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Exp318; Inclination; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Maximum angular deviation; Method comment; Sample code/label; Wilkes Land  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna H A; Collinson, Margaret E; Pearce, Martin A; Bujak, Jonathan; Heilmann-Clausen, Claus; Speelman, Eveline N; van Kempen, Monique M L; Reichart, Gert-Jan; Lotter, André F; Brinkhuis, Henk (2012): Coeval Eocene blooms of the freshwater fern Azolla in and around Arctic and Nordic seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 337-338, 108-119, https://doi.org/10.1016/j.palaeo.2012.04.002
    Publication Date: 2023-07-07
    Description: For a short time interval (c. 1.2 Myr) during the early middle Eocene (~49 Myr), the central Arctic Ocean was episodically densely covered by the freshwater fern Azolla, implying sustained freshening of surface waters. Coeval Azolla fossils in neighboring Nordic seas were thought to have been sourced from the Arctic. The recognition of a different Azolla species in the North Sea raised doubts about this hypothesis. Here we show that no less than five Azolla species had coeval blooms and spread in the Arctic and NW European regions. A likely trigger for these unexpected Azolla blooms is high precipitation prevailing by the end of the warmest climates of the Early Eocene Climatic Optimum (EECO).
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Röhl, Ursula; Brinkhuis, Henk; Stickley, Catherine E; Fuller, Michael D; Schellenberg, Stephen A; Wefer, Gerold; Wiliams, Graham L (2004): Sea level and astronomically induced environmental changes in middle and late Eocene sediments from the East Tasman Plateau. In: Exon, NF, Kennett, JP & Malone, M (eds.) The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica. American Geophysical Union (AGU), Geophysical Monograph Series, 151, 127-151, https://doi.org/10.1029/151GM09
    Publication Date: 2024-01-09
    Description: Eocene sediments drilled at the East Tasman Plateau (ETP) exhibit well-defined cycles, high-resolution magnetic stratigraphy, and environmentally-controlled dinoflagellate and diatom distribution patterns. We derive a cyclostratigraphy from the spectral analysis of high-resolution elemental concentration records (Ca, Fe) for this shallow marine time series spanning the middle to early late Eocene (C16n.2n - C21). Changes in carbonate content, the ratio between Gonyaulacoid and Peridinioid dinocysts, and relative abundance of "oligotrophic" diatoms serve as proxies for a high-resolution climatic and sea-level history with high values representing high sea-level stands and decreased eutrophy of surface waters. Changing ratios between high latitude dinocysts versus cosmopolitan species provide clues on sea surface temperature trends and water mass exchange. Our results show that the relatively shallow-water middle Eocene environments of the ETP are influenced by orbitally-forced climatic cycles superimposed on third order relative sea-level changes. Changes in the dominance of Milankovitch frequency at ~38.6 Ma (late Eocene) is related to an initial deepening-step within the Tasmanian Gateway prior to the major deepening during the middle late Eocene (~35.5 Ma). Decreasing sedimentation rates at 38 Ma and 37.2 Ma reflect winnowing associated with sea-level fall. This episode is followed by renewed transgression. Dinocyst distribution patterns indicate high latitude, probably cool temperate surface water conditions throughout, with the exception of a sudden surge in cosmopolitan species near the base of subchron C18.2r, at ~41 Ma; this event is tentatively correlated to the Middle Eocene Climatic Optimum.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Röhl, Ursula; Brinkhuis, Henk; Sluijs, Appy; Fuller, Michael D (2004): On the search for the Paleocene/Eocene boundary in the Southern Ocean: exploring ODP Leg 189 Holes 1171D and 1172D, Tasman Sea. In: Exon, NF; Malone, M and Kennett, JP (eds.), The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica. American Geophysical Union (AGU), Geophysical Monograph Series, 151, 113-125, https://doi.org/10.1029/151GM08
    Publication Date: 2024-01-09
    Description: The 'Paleocene/Eocene Thermal Maximum' or PETM (~55 Ma) was associated with dramatic warming of the oceans and atmosphere, pronounced changes in ocean circulation and chemistry, and upheaval of the global carbon cycle. Many relatively complete PETM sequences have by now been reported from around the world, but most are from ancient low- to midlatitude sites. ODP Leg 189 in the Tasman Sea recovered sediments from this critical phase in Earth history at Sites 1171 and 1172, potentially representing the southernmost PETM successions ever encountered (at ~70° to 65° S paleolatitude). Downhole and core logging data, in combination with dinoflagellate cyst biostratigraphy, magneto-stratigraphy, and stable isotope geochemistry indicate that the sequences at both sites were deposited in a high accumulation-rate, organic rich, marginal marine setting. Furthermore, Site 1172 indeed contains a fairly complete P-E transition, whereas at Site 1171, only the lowermost Eocene is recovered. However, at Site 1172, the typical PETM-indicative acme of the dinocyst Apectodinium was not recorded. We conclude that unfortunately, the critical latest Paleocene and PETM intervals are missing at Site 1172. We relate the missing section to a sea level driven hiatus and/or condensed section and recovery problems. Nevertheless, our integrated records provide a first-ever portrait of the trend toward, and aftermath of, the PETM in a marginal marine, southern high-latitude setting.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Warnaar, Jeroen; Bijl, Peter K; Huber, Matthew; Sloan, Lisa; Brinkhuis, Henk; Röhl, Ursula; Sriver, Ryan; Visscher, Henk (2009): Orbitally forced climate changes in the Tasman sector during the Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(3-4), 361-370, https://doi.org/10.1016/j.palaeo.2009.06.023
    Publication Date: 2024-01-09
    Description: The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-25
    Keywords: -; 318-U1359C; Angle of 95% confidence; Declination; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Exp318; Inclination; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Maximum angular deviation; Method comment; Sample code/label; Wilkes Land
    Type: Dataset
    Format: text/tab-separated-values, 182 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tauxe, Lisa; Stickley, Catherine E; Sugisaki, Saiko; Bijl, Peter K; Bohaty, Steven M; Brinkhuis, Henk; Escutia Dotti, Carlota; Flores, José-Abel; Houben, Alexander J P; Iwai, Masao; Jiménez-Espejo, Francisco Jose; McKay, Robert M; Passchier, Sandra; Pross, Jörg; Riesselman, Christina R; Röhl, Ursula; Sangiorgi, Francesca; Welsh, Kevin; Klaus, Adam; Fehr, Annick; Bendle, James A; Dunbar, Robert G; Gonzales, J; Hayden, Travis; Katsuki, Kota; Olney, Matthew P; Pekar, Stephen F; Shrivastva, P K; van de Flierdt, Tina; Williams, Thomas; Yamane, Masako (2012): Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: Constraints for paleoceanographic reconstruction. Paleoceanography, 27, PA2214, https://doi.org/10.1029/2012PA002308
    Publication Date: 2024-04-25
    Description: The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 25 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cook, Carys P; van de Flierdt, Tina; Williams, Trevor J; Hemming, Sidney R; Iwai, Masao; Kobayashi, Munemasa; Jiménez-Espejo, Francisco Jose; Escutia, Carlota; Gonzàlez, Jhon Jairo; Khim, Boo-Keun; McKay, Robert M; Passchier, Sandra; Bohaty, Steven M; Riesselman, Christina R; Tauxe, Lisa; Sugisaki, Saiko; Lopez Galindo, Alberto; Patterson, Molly O; Sangiorgi, Francesca; Pierce, Elizabeth L; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Bendle, James A; Bijl, Peter K; Carr, Stephanie A; Dunbar, Robert B; Flores, José-Abel; Hayden, Travis G; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Olney, Matthew P; Pekar, Stephen F; Pross, Jörg; Röhl, Ursula; Sakai, Toyusaburo; Shrivastava, Prakash Kumar; Stickley, Catherine E; Tuo, Shouting; Welsh, Kevin; Yamane, Masako (2013): Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geoscience, 6(9), 765-769, https://doi.org/10.1038/ngeo1889
    Publication Date: 2024-05-06
    Description: Warm intervals within the Pliocene epoch (5.33-2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century (Haywood and Valdes, doi:10.1016/S0012-821X(03)00685-X) and atmospheric CO2 concentrations similar to today (Seki et al., 2010, doi:10.1016/j.epsl.2010.01.037; Bartoli et al., 2011, doi:10.1029/2010PA002055; Pagani et al., 2010, doi:10.1038/ngeo724). Estimates for global sea level highstands during these times (Miller et al., 2012, doi:10.1130/G32869.1) imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adélie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...