ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 38 (2000), S. 1-7 
    ISSN: 1432-0983
    Keywords: Key words F1-ATPase ; ɛ-Subunit ; ρo-lethality ; Kluyveromyces lactis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mitochondrial F1-ATPase is a multimeric enzyme, comprised of 3α, 3β, γ, δ and ɛ subunits, that is primarily responsible for the synthesis of ATP in eukaryotic cells. Recent work has shown that the F1 complex of the petite-negative yeast Kluyveromyces lactis, with specific mutations in the α, β or γ subunits, has a novel function that suppresses lethality caused by loss of mtDNA. Previously, genes for the four largest subunits of K. lactis F1 have been identified and characterised. In this study the gene coding for the ɛ-subunit of F1, KlATPɛ, has been isolated and found to encode a polypeptide of 61 amino acids with only 32 residues identical to those in the protein from Saccharomyces cerevisiae. Strains carrying a null mutation of KlATPɛ are respiratory deficient while the introduction of ATPɛ from S. cerevisiae restores growth on non-fermentable carbon sources. In contrast to S. cerevisiae, K. lactis disrupted in ATPɛ does not have a detectable F1-related mitochondrial ATP hydrolysis activity, suggesting that the ɛ-subunit plays a critical role in the formation of the catalytic sector of F1. With a disrupted KlATPɛ, the ρo-lethality suppressor function of F1 carrying the atp2-1 and atp1-6 alleles is abolished. However, inactivation of the ɛ subunit does not eliminate the ρo-viable phenotype of the atp1-1, atp2-9, atp3-2 mutants. It is suggested that the absence of ɛ may effect the assembly or stability of F1 in the wild-type, atp 2-1 and atp1-6 strains, whereas the defect can be suppressed by the atp1-1, atp2-9 and atp3-2 mutations in the α, β and γ subunits respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key wordsKluyveromyces lactis ; Mitochondrial ribosomal protein ; ρo-lethality ; L23
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Kluyveromyces lactis nuclear gene, MRP-L23, encodes a polypeptide of 155 amino acids that shares 70% and 43% identity to the ribosomal proteins L23 and L13 of Saccharomyces cerevisiae and Escherichia coli. The deduced protein, designated KlL23, is a likely component of the large subunit of mitochondrial ribosomes as it can complement the respiratory deficient phenotype of a S. cerevisiae mrp-L23 mutant. As in S. cerevisiae, KlMRP-L23 is essential for respiratory growth of K. lactis because disruption of the gene in a “petite-positive” strain carrying a ρo-lethality suppressor atp mutation rendered cells unable to grow on a non-fermentable carbon source. However, in contrast to S. cerevisiae, disruption of MRP-L23 in wild type K. lactis is lethal. Meiotic segregants of K. lactis with a disrupted MRP-L23 allele form microcolonies with cell numbers varying from 32 to 300. These data clearly indicate an essential role of mitochondrial protein synthesis for viability of the petite-negative yeast K. lactis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...