ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Regulatory Sequences, Nucleic Acid  (1)
  • Animals, Genetically Modified  (1)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-15
    Description: A binary system for gene activation and site-specific integration, based on the conditional recombination of transfected sequences mediated by the FLP recombinase from yeast, was implemented in mammalian cells. In several cell lines, FLP rapidly and precisely recombined copies of its specific target sequence to activate an otherwise silent beta-galactosidase reporter gene. Clones of marked cells were generated by excisional recombination within a chromosomally integrated copy of the silent reporter. By the reverse reaction, integration of transfected DNA was targeted to a specific chromosomal site. The results suggest that FLP could be used to mosaically activate or inactivate transgenes for analysis of vertebrate development, and to efficiently integrate transfected DNA at predetermined chromosomal locations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Gorman, S -- Fox, D T -- Wahl, G M -- New York, N.Y. -- Science. 1991 Mar 15;251(4999):1351-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1900642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cell Line ; DNA Nucleotidyltransferases/genetics/*metabolism ; In Vitro Techniques ; Mammals/*genetics ; *Recombination, Genetic ; Restriction Mapping ; *Transfection ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-11-03
    Description: The human beta-globin locus control region (LCR) controls the transcription, chromatin structure, and replication timing of the entire locus. DNA replication was found to initiate in a transcription-independent manner within a region located 50 kilobases downstream of the LCR in human, mouse, and chicken cells containing the entire human beta-globin locus. However, DNA replication did not initiate within a deletion mutant locus lacking the sequences that encompass the LCR. This mutant locus replicated in the 3' to 5' direction. Thus, interactions between distantly separated sequences can be required for replication initiation, and factors mediating this interaction appear to be conserved in evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aladjem, M I -- Groudine, M -- Brody, L L -- Dieken, E S -- Fournier, R E -- Wahl, G M -- Epner, E M -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):815-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute, San Diego, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Cell Line ; Chickens ; *DNA Replication ; Globins/*genetics ; Humans ; Hybrid Cells ; Mice ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sequence Deletion ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...