ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-01
    Description: The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs as the free-energy barrier between two states is crossed. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding, we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Forster resonance energy transfer experiments. Whereas the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by a factor of less than 5, which shows that a fast- and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- McHale, Kevin -- Louis, John M -- Eaton, William A -- Z99 DK999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):981-4. doi: 10.1126/science.1215768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA. chunghoi@niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363011" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Carrier Proteins/*chemistry ; Fluorescence Resonance Energy Transfer ; Kinetics ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Photons ; Protein Conformation ; *Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-08-30
    Description: In order to investigate the behavior of single molecules under conditions far from equilibrium, we have coupled a microfabricated laminar-flow mixer to a confocal optical system. This combination enables time-resolved measurement of Forster resonance energy transfer after an abrupt change in solution conditions. Observations of a small protein show the evolution of the intramolecular distance distribution as folding progresses. This technique can expose subpopulations, such as unfolded protein under conditions favoring the native structure, that would be obscured in equilibrium experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lipman, Everett A -- Schuler, Benjamin -- Bakajin, Olgica -- Eaton, William A -- New York, N.Y. -- Science. 2003 Aug 29;301(5637):1233-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Building 5, Room 104, National Institutes of Health, Bethesda, MD 20892-0520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947198" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry ; Cold Temperature ; Diffusion ; Energy Transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Thermodynamics ; Thermotoga maritima/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, C K -- Hofrichter, J -- Eaton, W A -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):628-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8928010" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Monoxide/chemistry ; Cytochrome c Group/*chemistry ; Electrons ; Light ; Oxidation-Reduction ; Photochemistry ; Protein Denaturation ; *Protein Folding ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-26
    Description: Experimental, theoretical, and computational studies of small proteins suggest that interresidue contacts not present in the folded structure play little or no role in the self-assembly mechanism. Non-native contacts can, however, influence folding kinetics by introducing additional local minima that slow diffusion over the global free-energy barrier between folded and unfolded states. Here, we combine single-molecule fluorescence with all-atom molecular dynamics simulations to discover the structural origin for the slow diffusion that markedly decreases the folding rate for a designed alpha-helical protein. Our experimental determination of transition path times and our analysis of the simulations point to non-native salt bridges between helices as the source, which provides a quantitative glimpse of how specific intramolecular interactions influence protein folding rates by altering dynamics and not activation free energies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- Piana-Agostinetti, Stefano -- Shaw, David E -- Eaton, William A -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1504-10. doi: 10.1126/science.aab1369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA. chunghoi@niddk.nih.gov stefano.piana-agostinetti@DEShawResearch.com david.shaw@DEShawResearch.com eaton@helix.nih.gov. ; D. E. Shaw Research, New York, NY 10036, USA. chunghoi@niddk.nih.gov stefano.piana-agostinetti@DEShawResearch.com david.shaw@DEShawResearch.com eaton@helix.nih.gov. ; D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. chunghoi@niddk.nih.gov stefano.piana-agostinetti@DEShawResearch.com david.shaw@DEShawResearch.com eaton@helix.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404828" target="_blank"〉PubMed〈/a〉
    Keywords: Diffusion ; Entropy ; Hydrogen-Ion Concentration ; Kinetics ; *Models, Chemical ; Molecular Dynamics Simulation ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...