ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-19
    Description: Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson's two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One prominent example is the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation. Here we describe an RNA-mediated interference (RNAi)-based approach to discovery of the 5q- disease gene. We found that partial loss of function of the ribosomal subunit protein RPS14 phenocopies the disease in normal haematopoietic progenitor cells, and also that forced expression of RPS14 rescues the disease phenotype in patient-derived bone marrow cells. In addition, we identified a block in the processing of pre-ribosomal RNA in RPS14-deficient cells that is functionally equivalent to the defect in Diamond-Blackfan anaemia, linking the molecular pathophysiology of the 5q- syndrome to a congenital syndrome causing bone marrow failure. These results indicate that the 5q- syndrome is caused by a defect in ribosomal protein function and suggest that RNAi screening is an effective strategy for identifying causal haploinsufficiency disease genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771855/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771855/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebert, Benjamin L -- Pretz, Jennifer -- Bosco, Jocelyn -- Chang, Cindy Y -- Tamayo, Pablo -- Galili, Naomi -- Raza, Azra -- Root, David E -- Attar, Eyal -- Ellis, Steven R -- Golub, Todd R -- R01 HL082945/HL/NHLBI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jan 17;451(7176):335-9. doi: 10.1038/nature06494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202658" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Diamond-Blackfan/genetics/physiopathology ; Cell Differentiation ; Cells, Cultured ; Chromosome Deletion ; Chromosomes, Human, Pair 5/*genetics ; Erythroid Cells/cytology/metabolism ; Genetic Linkage/*genetics ; Genetic Predisposition to Disease/*genetics ; Hematopoietic Stem Cells/metabolism ; Humans ; Phenotype ; *RNA Interference ; RNA Precursors/genetics/metabolism ; RNA, Ribosomal/genetics/metabolism ; RNA, Ribosomal, 18S/genetics ; Ribosomal Proteins/deficiency/*genetics/metabolism ; Ribosomes/chemistry/genetics/metabolism ; Syndrome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-17
    Description: Aberrant activation of the canonical WNT/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated beta-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation. To identify genes that both modulate beta-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Here we show that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels of CDK8 and beta-catenin hyperactivity. CDK8 kinase activity was necessary for beta-catenin-driven transformation and for expression of several beta-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer a clinical benefit in beta-catenin-driven malignancies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Firestein, Ron -- Bass, Adam J -- Kim, So Young -- Dunn, Ian F -- Silver, Serena J -- Guney, Isil -- Freed, Ellen -- Ligon, Azra H -- Vena, Natalie -- Ogino, Shuji -- Chheda, Milan G -- Tamayo, Pablo -- Finn, Stephen -- Shrestha, Yashaswi -- Boehm, Jesse S -- Jain, Supriya -- Bojarski, Emeric -- Mermel, Craig -- Barretina, Jordi -- Chan, Jennifer A -- Baselga, Jose -- Tabernero, Josep -- Root, David E -- Fuchs, Charles S -- Loda, Massimo -- Shivdasani, Ramesh A -- Meyerson, Matthew -- Hahn, William C -- K08 CA134931/CA/NCI NIH HHS/ -- P50CA127003/CA/NCI NIH HHS/ -- R33 CA128625/CA/NCI NIH HHS/ -- R33 CA128625-01A1/CA/NCI NIH HHS/ -- R33CA128625/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Sep 25;455(7212):547-51. doi: 10.1038/nature07179. Epub 2008 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18794900" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Colorectal Neoplasms/*genetics/*metabolism/pathology ; Cyclin-Dependent Kinase 8 ; Cyclin-Dependent Kinases/deficiency/*genetics/*metabolism ; Gene Dosage ; *Gene Expression Regulation, Neoplastic ; Humans ; Oncogene Proteins/deficiency/genetics/metabolism ; *Oncogenes ; RNA Interference ; Transcription, Genetic ; beta Catenin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...