ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-01
    Description: The association between inflammation and endoplasmic reticulum (ER) stress has been observed in many diseases. However, if and how chronic inflammation regulates the unfolded protein response (UPR) and alters ER homeostasis in general, or in the context of chronic disease, remains unknown. Here, we show that, in the setting of obesity, inflammatory input through increased inducible nitric oxide synthase (iNOS) activity causes S-nitrosylation of a key UPR regulator, IRE1alpha, which leads to a progressive decline in hepatic IRE1alpha-mediated XBP1 splicing activity in both genetic (ob/ob) and dietary (high-fat diet-induced) models of obesity. Finally, in obese mice with liver-specific IRE1alpha deficiency, reconstitution of IRE1alpha expression with a nitrosylation-resistant variant restored IRE1alpha-mediated XBP1 splicing and improved glucose homeostasis in vivo. Taken together, these data describe a mechanism by which inflammatory pathways compromise UPR function through iNOS-mediated S-nitrosylation of IRE1alpha, which contributes to defective IRE1alpha activity, impaired ER function, and prolonged ER stress in obesity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573582/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573582/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Ling -- Calay, Ediz S -- Fan, Jason -- Arduini, Alessandro -- Kunz, Ryan C -- Gygi, Steven P -- Yalcin, Abdullah -- Fu, Suneng -- Hotamisligil, Gokhan S -- DK052539/DK/NIDDK NIH HHS/ -- R01 DK052539/DK/NIDDK NIH HHS/ -- T32 GM007367/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):500-6. doi: 10.1126/science.aaa0079.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases and Sabri Ulker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics and Complex Diseases and Sabri Ulker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. ghotamis@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/*genetics ; Diet, High-Fat ; Disease Models, Animal ; Endoplasmic Reticulum/*metabolism ; *Endoplasmic Reticulum Stress ; Endoribonucleases/*metabolism ; Glucose/metabolism ; Homeostasis ; Inflammation/metabolism ; Liver/metabolism ; Mice ; Mice, Obese ; Nitric Oxide Synthase Type II/metabolism ; Nitrogen Oxides/*metabolism ; Obesity/*metabolism/*pathology ; Protein-Serine-Threonine Kinases/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Transcription Factors/*genetics ; Unfolded Protein Response
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 684-692 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A free radical copolymerization model is proposed for simulating the reaction rates and conversions of styrene monomer and unsaturated polyester resins during curing. This model is based on film theory in which the rate constants reflect both reaction and diffusion resistances. Differential scanning calorimetry in combination with Fourier transform infrared spectroscopy is used to measure the overall and individual reactivities of reacting species. Model parameters are determined from experimental data. The applicability of this model is demonstrated in a cure simulation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 82-88 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article presents an approach to fault diagnosis of chemical processes at steadystate operation by using artificial neural networks. The conventional back-propagation network is enhanced by adding a number of functional units to the input layer. This technique considerably extends a network's capability for representing complex nonlinear relations and makes it possible to simultaneously diagnose multiple faults and their corresponding levels in a chemical process. A simulation study of a heptane-to-toluene process at steady-state operation shows successful results for the proposed approach.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 33 (1987), S. 1315-1341 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper is concerned with applications of a kinetic-diffusion model which accounts for the gel effect and glass effect for free radical polymerizations under nonisothermal conditions. Bulk polymerizations of styrene and unsaturated polyester in the batch casting process were investigated both experimentally and theoretically. A differential scanning calorimeter (DSC) and a Fourier transform infrared spectrometer (FTIR) were employed to elucidate incomplete reactions resulting from glass transition and dead-ending phenomena and to provide kinetic information for modelling. Temperature, conversion, and cumulative molecular weight profiles were simulated under several wall temperature programs. Predictions of ultimate cumulative molecular weights across the reactor, when compared with experimental results measured by gel permeation chromatography (GPC), affirmed that the molecular weight variation due to the radial temperature gradient could be alleviated by manipulating the wall temperature.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 7 (1986), S. 250-260 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A mechanistic kinetic and heat transfer model is used to describe the cure of sheet molding compounds (SMC). Kinetic parameters such as rate constant of initiator decomposition and rate constant of propagation are estimated from the induction time and the time to reach the peak exotherm of isothermal reaction curves measured by the differential scanning calorimetry (DSC). Temperature and conversion profiles inside plate sections of SMC parts during molding are measured. The predicted results compare well with the experimental data except the limiting conversion. A set of predictive parameters are proposed from this model as guidelines for the optimal molding of SMC. Several moldability diagrams are also constructed which can be easily used to design the optimum SMC recipe for a given processing condition.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 7 (1986), S. 239-249 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A series of differential scanning calorimetry (DSC) and molding experiments were carried out to measure the effect of curing agents, namely initiators and inhibitor, on the SMC reaction. Results showed that the induction time, the reaction rate, and the limiting conversion of sheet molding compounds can be modified through the change of curing agents. The SMC resin with a higher concentration of low temperature initiator and molded at higher temperature may cure in a shorter period of time and reach a higher conversion. The shortened scorch time and shelf life can be balanced by adding small amount of inhibitor. Surface quality of molded SMC parts measured by solvent extraction process showed that limiting conversion is an important factor in SMC molding.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...