ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • www.frontiers.org  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2022-07-05
    Description: Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southernmost population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Description: Thermal characteristics of kelp species have been studied in many ways, but potentially persistent effects of temperature across generations are yet poorly understood. In this context, the effect of thermal priming on fertility and growth of the N-Atlantic kelp species Laminaria digitata was investigated within and across life cycle generations in a two-step common garden experiment. Using vegetative clonal gametophytes from cold (5°C) and warm (15°C) pre-experimental cultivation (3 years), we first quantified gametogenesis and recruitment over two weeks at a common temperature of 10°C. Then, recruited sporophytes were transferred to a temperature gradient spanning the tolerance range of the species from 0°C to 20°C. We hypothesized that a warm gametophyte preexperimental cultivation promotes performance of sporophytes at warm temperatures and vice versa. Interestingly, gametogenesis speed and sporophyte recruitment were higher in gametophytes following cold compared to warm pre-experimental cultivation, which indicates carry-over effects of temperature within the gametophyte generation. Compared to warm pre-experimental cultivation of gametophytes, a cold preexperimental cultivation enhanced growth of juvenile Laminaria digitata sporophytes by more than 69% at the extreme low and high temperatures of 0 and 20°C. This is the first evidence for a cross-generational effect between gametophyte parents and offspring sporophytes. As cold gametophyte cultivation increased the trait performance of gametogenesis, recruitment and thermal tolerance of juvenile sporophytes, priming of early life cycle stages may be used to increase resilience and productivity of kelps in marine forest restoration efforts and kelp mariculture.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...