ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: immunoreceptor tyrosine-based activation motif ; nmr structure ; T-cell antigen receptor ; CD3-ε ; cytoplasmic tail ; Src homology 2/Src homology 3 domains ; phosphotyrosine binding domains ; T-cell activation ; tyrosine phosphorylation ; edoplasmic reticulum retention ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformation adopted in solution by the cytoplasmic tail of CD3-ε has been analyzed by 1H-nmr. The cytoplasmic tail is mostly random coil except for the amino acids conforming the immunoreceptor tyrosine-based activation motif (ITAM), YxxL/IxxxxxxxY xxL. Although the N-terminal Y xxL sequence of the motif is poorly folded, adopting 6-residue turn-like conformations with the Tyr side chain in two different orientations, the C-terminal Y xxL sequence is placed in a more complex structure involving a set of nonclassical α-helix turns and β-turns that comprises 11 amino acids. This structure is not modified by phosphorylation of the tyrosine residue. The differences in the conformation adopted around the two tyrosines of the ITAM motif suggest that they may play different roles pertaining to either binding signal transducing proteins or, alternatively, proteins involved in other processes such as endoplasmic reticulum location. © 1997 John Wiley & Sons, Inc. Biopoly 42: 75-88, 1997
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The solution structure of a peptide fragment corresponding to the 38-59 region of porcine phospholipase A2 has been investigated using CD, nmr chemical shifts, and nuclear over-hauser effects (NOEs). This isolated fragment of phospholipase forms an α-helix spanning residues 38-55, very similar to the one found in the native protein, except for residues 56-58, which were helical in the crystal but found random in solution. Addition of triflouro-ethanol (TFE) merely increased helix population but it did not redefine helix limits. To investigate how the folding information, in particular that concerning eventual helix start and stop signals, was coded in this particular amino acid sequence, the helices formed by synthetic peptides reproducing sections of this phospholipase 38-59 fragment, namely 40-59, 42-59, 38-50, and 45-57, were characterized using NOEs and helix populations quantitatively evaluated on different peptide chain segments using nmr chemical shifts in two solvents (H2O and 30% TFE/H2O). A set of nmr spectra was also recorded and assigned under denaturing conditions (6Murea) to obtain reliable values for the chemical shifts of each peptide in the random state. Based on chemical shift data, it was concluded that the helix formed by the phospholipase 38-59 fragment was not abruptly, but progressively, destabilized all along its length by successive elimination of residues at the N end, while the removal of residues at the C end affected helix stability more locally and to a lesser extent. These results are consistent with the idea that there are not single residues responsible for helix initiation or helix stability, and they also evidence an asymmetry for contributions to helix stability by residues located at the two chain ends. The restriction of molecular mobility caused by linking with a disulphide bridge at Cys 51 two identical 38-59 peptide chains did not increase helix stability. The helix formed by the covalently formed homodimer was very similar in length and population to that formed by the monomer. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...