ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0749-503X
    Keywords: Peroxisomes ; protein tarageting ; Saccharomyces cerevisiae ; Candida tropicalis ; Candida albicans ; Yarrowia lipolytica ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The carboxyl-terminal tripeptide Ala-Lys-Ile is essential for targeting Canadida tropicalis trifunctional enzyme (hydratase-dehydrogenase-epimerase) to peroxisomes of both Candida albicans and Saccharomyces cerevisiae (Aitchison, J. D., Murray, W. W. and Rachubinski, R. A. (1991). J. Biol. Chem. 266, 23197-23203). We investigated the possibility that this tripeptide may act as a general peroxisomal targeting signal (PTS) for other proteins in the yeasts C. tropicalis, C. albicans, Yarrowia lipolytica and S. cerevisiae, and in rat liver. Anti-AKI antibodies raised against the carboxyl-terminal 12 amino acids of trifunctional enzyme were used to search for this PTS in proteins of these yeasts and of rat liver. The anti-AKI antibodies reacted exclusively with multiple peroxisomal proteins from the yeasts C. tropicalis, C. albicans and Y. lipolytica. There was a weak reaction of the antibodies with one peroxisomal protein from S. cerevisiae and no reaction with peroxisomal proteins from rat liver. Antibodies directed against a synthetic peptide containing a carboxyl-terminal Ser-Lys-Leu PTS (Gould, S. J., Krisans, S., Keller, G.-A. and Subramani, S. (1990). J. Cell Biol. 110, 27-34) reacted with multiple peroxisomal proteins of rat liver and with peroxisomal proteins of yeast distinct from those identified with anti-AKI antibodies. These results provide evidence that several peroxisomal proteins of different yeasts contain a PTS antigenically similar to that of C. tropicalis trifunctional enzyme and that this signal is absent from peroxisomal proteins from at least one mammalian system, rat liver.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Peroxisome ; immunofluorescence ; PTS-1 ; electroporation ; yeast ; targeting ; biogenesis ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We describe the isolation and characterization of peroxisomal assembly mutants in the genetically manipulable yeast Yarrowia lipolytica (pay mutants). These mutants were initially identified as oleic acid-non-utilizers by their inability to grow on oleic acid, the utilization of which requires peroxisomal β-oxidation enzymes. Identification of a subset of oleic acid-non-utilizers as pay mutants was obtained by a rapid immunofluorescence procedure using antibodies to the peroxisomal targeting signal Ser-Lys-Leu-CO2H. Punctate structures characteristic of peroxisomes were not detected in pay mutants using this technique. This rapid identification by immunofluorescence should be generally applicable to the selection of peroxisomal assembly mutants in other yeasts. To take advantage of the pay mutant system, we constructed a genomic library in the autonomously replicating vector pINA445 and developed an efficient and rapid electroporation procedure for the functional complementation of these mutants. We have been successful in functionally complementing two independent pay mutants. Molecular analysis of these and other complementing genes will allow for characterization of some of the cellular elements involved in peroxisomal assembly.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...