ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley / Society for Applied Microbiology and Blackwell Publishing Ltd,  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-02-06
    Description: Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml−1) and the Kuroshio Front for OII (50 189 ± 561 copies ml−1) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml−1) and the tropical Atlantic for BII (4125 ± 339 copies ml−1). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13 of 1589 ± 448 eukaryotic phytoplankton cells ml−1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate‐replete (0.65 ± 0.07 d−1) and 10‐fold lower (low)‐phosphate (0.11 ± 0.04 d−1) conditions, and infected by the phycodnavirus MpV‐SP1. Expression of 17% of Micromonas genes in uninfected cells differed by 〉1.5‐fold (q 〈 0.01) between nutrient conditions, with genes for P‐metabolism and the uniquely‐enriched Sel1‐like repeat (SLR) family having higher relative transcript abundances, while phospholipid‐synthesis genes were lower in low‐P than P‐replete. Approximately 70% (P‐replete) and 30% (low‐P) of cells were lysed 24 h post‐infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low‐P) hosts. All MpV‐SP1 genes were expressed, and our analyses suggest responses to differing host‐phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host‐phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host‐prasinovirus system that differ from other marine algal‐virus systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...