ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-22
    Description: In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complexes formation the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south-dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility (AMS), we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension. (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In a second stage the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest-directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) A third stage was marked by syn-magmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in narrow shear zones nucleation which (4) continued to develop after the pluton solidification.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-07
    Description: Although fundamental to the understanding of crustal dynamics in extensional setting, the relationships between the emplacement of granitic intrusions and activity of detachments still remain very elusive. Through a multi-scale approach, we here document a continuous deformation history between the monzogranitic intrusion of Naxos and the Naxos-Paros Detachment System (Cyclades, Greece). Field observations first show an early magmatic deformation followed by solid-state, ductile and then brittle deformation when approaching the detachment zone, as evidenced by the overprinting of mylonites by cataclastes and pseudotachylites. From these observations, we define six strain facies that characterize a positive strain gradient from core to rim of the Naxos monzogranite. Based on field pictures, X-ray tomography and Electron BackScatter Diffraction (EBSD) analyses along the strain gradient, we then quantify the intensity of mineralogical fabrics in 2D and 3D and better characterize the deformation mechanisms. Our measured shape variations of the strain ellipsoid corroborate the large-scale strain gradient, showing a good correlation between qualitative and quantitative studies. In addition, EBSD data indicate that dislocation creep was predominant during cooling from more than 500°C to temperature conditions of the ductile-to-brittle transition. However, 1) a weakening of quartz lattice preferred orientation with increasing strain and 2) evidence of numerous four-grain junctions in high-strain shear bands also indicate that grain boundary sliding significantly contributed to the deformation. Although the source of grain boundary sliding remains to be constrained, it provides a consistent approach to account for strain localization in Naxos.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...