ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-11-15
    Description: The hydrochemical composition of groundwater and the isotopic composition of sulphur compounds in sediments (δ34S of sulphide, inorganic sulphate) and groundwater (δ34S, δ18O of dissolved sulphate) have been investigated to reveal the reasons for elevated concentrations of dissolved groundwater sulphate in the drinking water catchment area of Torgau-Mockritz (Germany). The three most important a nthropogenic sources of sulphate identified in this study are historic atmospheric sulphate deposition, predominantly of anthropogenic origin, inorganic fertilization, and dissolution of gypsum from waste dumps. Owing to their overlapping isotopic range, no clear differentiation between the individual anthropogenic sources is possible. Sulphate from the oxidation of sedimentary sulphides, however, was recognized by its negative sulphur isotope signature (δ34S 〈 - 5‰). The mobilization of sulphate from different soil sulphur species is closely connected with variable isotopic fractionations, resulting in a wide isotopic variation range for the sulphate entering the saturated zone. Generally, sulphur and oxygen isotope ratios of the dissolved groundwater sulphate range from -19 to +37‰ (Vienna Cañon Diablo troilite) and from -2 to +‰19 (Vienna standard mean ocean water), respectively. Sulphate from the majority of groundwater samples can be assigned to anthropogenic sources. Sulphate from sulphide oxidation is especially present in samples from the upper sampling level and the groundwater surface. Sulphate concentrations above 700 mg 1-1 are mostly caused by the oxidation of sulphide. Sulphate that occurs in low and moderate concentrations dominantly originates from anthropogenic sources. δ34S distribution patterns were used to locate the sources for the elevated sulphate concentrations in the raw water. It was shown that the sulphate is not mobilized in the immediate vicinity of the production wells. Rather, it originates in an area ∼1·5 km west of the intake. The main mobilization mechanism there is the oxidation of reduced sedimentary sulphur species. Beyond its local significance, this study presents a general example how changes in the sulphur cycle indicate major, anthropogenically induced alterations of the hydrochemical situation in catchment areas. Copyright © 2005 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-11-03
    Print ISSN: 1520-4081
    Electronic ISSN: 1522-7278
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...