ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (5). pp. 2234-2239.
    Publication Date: 2019-07-16
    Description: We examine the interannual variability of the seasonal mean atmospheric circulation in the Southern Hemisphere during austral winter. The three major modes are identified by rotated EOF (REOF) analysis. As expected, REOF1 is associated with the Southern Annular Mode which is dominated by internal atmospheric dynamics. REOF2 displays a wave train, linked to the western North Pacific monsoon and the Pacific-Japan pattern in East Asia in the same season; REOF3 resembles the Pacific-South American pattern. Externally-forced variability strongly projects on both REOF2 and REOF3 so that, in the ensemble mean, an atmospheric model with prescribed observed sea surface temperature (SST) captures considerable parts of the time evolution of REOF2 (50%) and REOF3 (25%), suggesting a potential predictability for the two modes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (22). 10,037-10,046.
    Publication Date: 2019-07-16
    Description: Variability of mid-latitude blocking in the boreal winter northern hemisphere is investigated for the period 1960/61 to 2001/02 by means of relaxation experiments with the model of the European Center for Medium-Range Weather Forecasts. It is shown that there is pronounced interannual and decadal variability in blocking, especially over the Eurasian continent, consistent with previous studies. The relaxation experiments show that realistic variability in the tropics can account for a significant part of observed interannual blocking variability, but also that about half of the observed variability can only be explained by extratropical tropospheric variability. On the quasi-decadal time scale, extratropical sea surface temperature and sea-ice, in addition to tropical variability, play a more important role. The stratosphere, which has been shown to influence interannual variability of the North Atlantic Oscillation in previous studies, has no significant influence on blocking according to our analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-08
    Description: We present a simulation of Antarctic iceberg drift and melting that includes small, medium‐sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg‐draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤2.2 km), “small‐to‐medium‐sized" (≤10 km), and small‐to‐giant icebergs (including icebergs 〉10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...