ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-01
    Description: Milk alpha-, beta- and kappa-casein proteins assemble into casein micelles in breast epithelial cells. The glycomacropeptide (GMP) tails of kappa-casein that extend from the surface of the micelle are key to assembly and aggregation. Aggregation is triggered by stomach pepsin cleavage of GMP from para-kappa-casein (PKC). While one casein micelle model emphasizes the importance of hydrophobic interactions, another focuses on polar residues. We performed an evolutionary analysis of kappa-casein primary sequence and predicted features that potentially impact on protein interactions. We noted more rapid change in the earlier period (166 to 60 Ma). Pepsin and plasmin cleavage sites were avoided in the GMP, which may partly explain its amino acid composition. Short tandem repeats have led to modest expansions of PKC, and to large GMP expansions, suggesting the GMP is less length constrained. Amino acid compositional constraints were assessed across species. Polarity and hydrophobicity properties were insufficient to explain differences between PKC and GMP. Among polar residues, threonine dominates the GMP, compared to serine, probably reflecting its preference for O-glycosylation over phosphorylation. Glutamine, enriched in the bovine PQ-rich region, is not positionally conserved in other species. Among hydrophobic residues, isoleucine is clearly preferred over leucine in the GMP, and patches of hydrophobicity are not markedly positionally conserved. PKC tyrosine and charged residues showed stronger conservation of position, suggesting a role for pi-interactions, seen in other structurally dynamic protein membraneless assemblies. Independent acquisitions of cysteines are consistent with a trend of increasing stabilization of multimers by covalent disulphide bonds, over evolutionary time. In conclusion, kappa-casein compositional and positional constraints appear to be influenced by modification preferences, protease evasion and protein–protein interactions.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-01
    Description: Background: The polyproline II helix (PPIIH) is an extended protein left-handed secondary structure that usually but not necessarily involves prolines. Short PPIIHs are frequently, but not exclusively, found in disordered protein regions, where they may interact with peptide-binding domains. However, no readily usable software is available to predict this state. Results: We developed PPIIPRED to predict polyproline II helix secondary structure from protein sequences, using bidirectional recurrent neural networks trained on known three-dimensional structures with dihedral angle filtering. The performance of the method was evaluated in an external validation set. In addition to proline, PPIIPRED favours amino acids whose side chains extend from the backbone (Leu, Met, Lys, Arg, Glu, Gln), as well as Ala and Val. Utility for individual residue predictions is restricted by the rarity of the PPIIH feature compared to structurally common features. Conclusion: The software, available at http://bioware.ucd.ie/PPIIPRED , is useful in large-scale studies, such as evolutionary analyses of PPIIH, or computationally reducing large datasets of candidate binding peptides for further experimental validation.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-01
    Description: The juxtamembrane domains (JMD) of transmembrane proteins are rich in critical peptide sequences that participate in dynamic cell signalling events. Synthetic JMD peptides derived from cadherin cell adhesion proteins have previously been shown to modulate platelet function. In this study, we aimed to develop functional bioactive agents from bioinformatically identified critical peptide sequences. We synthesized overlapping 12–15 amino acid peptides from E- and N-cadherin JMD and assessed their effect on platelet aggregation and platelet ATP secretion. Peptides derived from close to the membrane proximal region inhibit platelet function. Sequential deletion of amino acids from the N- and C-termini of the inhibitory E-cadherin peptides identified the short K 756 EPLLP 763 motif as a critical bioactive sequence. Alanine scanning studies further identified that the di-leucine (LL) motif and positively charged lysine (K) are crucial for peptide activity. Moreover, scrambled peptides failed to show any effect on platelet activity. We conclude that peptides derived from JMD of E-cadherin provide potential lead peptides for the development of anti-thrombotic agents and to enable further understanding of the role of cadherins in platelet function.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...