ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DNA photolyase-pyrimidine dimer complexes  (1)
  • Springer  (1)
  • 1
    ISSN: 1617-4623
    Keywords: UV inactivation of β-galactosidase expression ; Genome torsional strain ; DNA photolyase-pyrimidine dimer complexes ; Bacterial nucleoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Escherichia coli strains WU and CS101, UV inactivation of lacZ gene expression is more effective when the cells contain amplified DNA photolyase, and flash photoreactivation (fPR) after 15 min of metabolism does not reverse inactivation by the photolyasedimer complexes. In other strains, also studied with or without amplified DNA photolyase, there is no differential UV inactivation and fPR reverses inactivation by the complexes regardless of continued metabolism. The irreparable condition in strain WU is not due to dysfunction of photolyase: during post-UV metabolism, fPR still restores viability and dimers are removed from the region of the lac operon. When the wild-type lac promoter is repalced by the UV5 promoter, making expression insensitive to relaxed supercoiling and catabolite repression, inactivation by dimers alone becomes more resistant, i.e. requires higher fluences, but inactivation in WU and CS101 is still exceptionally sensitive to photolyasedimer complexes. This indicates that dimers external to the wild-type lac operon may inhibit expression by altering supercoiling but that complexes must involve some other mechanism for their special effect in WU and CS101. The exceptionally efficient inactivation and irreparable condition are consistent with the idea that, in two specific laboratory strains, photolyase bound to dimers at a considerable distance from the lac operon may initiate an aggregation of DNA with other cellular molecules that extends to, and inactivates expression from, the operon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...