ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America  (2)
  • 1
    Publication Date: 2005-06-01
    Description: To investigate source-scaling relations for small earthquakes (M (sub w) -1.8 to 1.2) we have determined source parameters for numerous events ( approximately 1500) from the 1400-m-deep Pyhasalmi ore mine in Finland. In addition to a spectral integration approach, we have fitted Brune, Boatwright, and Haskell spectral-shape models to the observed spectra and investigated attenuation influences. Of three different constant Q models (200, 350, and 800), a Q of 350 in combination with the Brune spectral model satisfied the data best. We have also investigated the frequency dependence of Q using the spectral decay method and found that Q increases with frequency. For selected events from two distinct clusters, we compared source parameters derived from constant Q models with source parameters using the multiple empirical Green"s function (MEGF) approach. By using constant Q models, the apparent stress seems to increase with magnitude, whereas results based on the MEGF approach indicate constant apparent stress with magnitude. In comparison with results from other studies that cover a larger-magnitude scale, we find apparent stresses that are about 1 to 2 orders of magnitude smaller than most of those. A modified M (sub 0) approximately f (sub c) (super -(3+epsilon )) scaling relation allows for increasing apparent stress with magnitude and can hence combine this study's results with apparent stresses found for large earthquakes. However, within the limited-magnitude range of our data, apparent stresses seem constant.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-04-01
    Description: To identify and constrain the target zone for the planned SAFOD Main Hole through the San Andreas Fault (SAF) near Parkfield, California, a 32-level three-component (3C) geophone string was installed in the Pilot Hole (PH) to monitor and improve the locations of nearby earthquakes. The orientation of the 3C geophones is essential for this purpose, because ray directions from sources may be determined directly from the 3D particle motion for both P and S waves. Due to the complex local velocity structure, rays traced from explosions and earthquakes to the PH show strong ray bending. Observed azimuths are obtained from P-wave polarization analysis, and ray tracing provides theoretical estimates of the incoming wave field. The differences between the theoretical and the observed angles define the calibration azimuths. To investigate the process of orientation with respect to the assumed velocity model, we compare calibration azimuths derived from both a homogeneous and 3D velocity model. Uncertainties in the relative orientation between the geophone levels were also estimated for a cluster of 36 earthquakes that was not used in the orientation process. The comparison between the homogeneous and the 3D velocity model shows that there are only minor changes in these relative orientations. In contrast, the absolute orientations, with respect to global North, were significantly improved by application of the 3D model. The average data residual decreased from 13 degrees to 7 degrees , supporting the importance of an accurate velocity model. We explain the remaining residuals by methodological uncertainties and noise and with errors in the velocity model.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...