ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-26
    Description: To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, spectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (V (sub S) ) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. V (sub S) profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. V (sub S30) (average V (sub S) in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new V (sub S) data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-16
    Description: From the end of August to early September 2011, 15 ocean-bottom seismometers (OBSs) were deployed offshore northeastern Taiwan for approximately 20 days. During this period, the typhoon Nanmadol formed in the western Pacific, moved northwestward from the East Philippines, and made landfall on the island of Taiwan. In this study, we analyzed the seismic signals from the OBSs and the marine metrological data to investigate the influence of the typhoon on submarine seismic records. Our results show that the signals induced by the typhoon occurred mainly at approximately 0.15-0.5 Hz frequency. The magnitude of these signals depends substantially on water depth. Some exceptions, most likely generated by site effects, were observed. Also, a positive correlation exists between the signals energy and the local wave height, which suggests that the microseisms were affected by the pressure changes produced by the local wave activity as the typhoon passed over the stations. However, when an OBS was outside the typhoon periphery, any wave energy variations could only be caused by the elastic wave formed around the typhoon area, the energy of which is transmitted through the ocean bottom to the stations. Thus, no local waves were excited by the strong winds, and only a relatively small amount of energy was recorded.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...