ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-28
    Description: This is the first report of occurrences of platinum-group minerals (PGM) and unnamed phases of platinum-group elements (PGE) from the Pados-Tundra ultramafic complex of Paleoproterozoic age, Kola Peninsula. The PGM occur as individual inclusions or intergrowths (≤1–10 μm) hosted by cores of zoned grains of chromite–magnesiochromite (Chr) in chromitite of the Dunite block in the eastern portion of the complex. Osmium-poor laurite is abundant, commonly as intimate intergrowths with clinochlore (〉80% laurite grains), followed by Os- and Ir-dominant alloys (i.e., the minerals osmium and iridium, respectively); unnamed phases of ruthenium selenide [RuSe 2 ] and rhodium telluride [RhTe] are rare. Selenium-rich laurite, not reported previously, likely belongs to an inferred RuS 2 –RuSe 2 series. Native Ru forms micro-(nano)-spherules in framboid-type aggregates, in association with relict laurite, which are surrounded by a skeletal grain of clinochlore; the host is Chr. The framboidal texture of nanophases of ruthenium, hitherto unreported in PGE alloys, likely formed as a result of deposition from a H 2 -bearing fluid, involving a reaction of desulfurisation and reduction of laurite. A highly S-deficient environment is indicated; a low sulfur fugacity, presumably below the Os–OsS 2 buffer, caused the observed coexistence of a low-Os variety of laurite with Os-dominant alloy. An ultimate loss of total S is implied to have decreased the S/Se ratio, which resulted in the precipitation of Ru-dominant sulfoselenide–selenide phases, likely from an oxidizing fluid at a late stage of mineralization. We also infer that the laurite–clinochlore intergrowths crystallized relatively late, from microvolumes of an H 2 O-bearing fluid of contrasting composition, enriched in Ru, S, and lithophile elements.
    Print ISSN: 0935-1221
    Electronic ISSN: 1617-4011
    Topics: Geosciences
    Published by Schweizerbart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...