ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (17)
  • Wiley  (8)
Collection
Keywords
  • 1
    Publication Date: 2012-04-03
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    Publication Date: 2021-04-23
    Description: The supply and bioavailability of iron (Fe) controls primary productivity and N2-fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe) and dissolved Fe (dFe) from the (sub)-tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles ‘buffer’ dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall ‘available’ (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its’ inclusion in Fe budgets and biogeochemical models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: The cyanobacterium Trichodesmium is responsible for a significant proportion of the annual "new" nitrogen introduced into the global ocean. Despite being arguably the best studied marine diazotroph, the factors controlling the distribution and growth of Trichodesmium remain a subject of debate, with sea surface temperature, the partial pressure of CO2, and nutrients including iron (Fe) and phosphorus (P), all suggested to be important. Synthesizing data from seven cruises collectively spanning large temporal and spatial scales across the Atlantic Ocean, including two previously unreported studies crossing the largely undersampled South Atlantic gyre, we assessed the relationship between proposed environmental drivers and both community N2 fixation rates and the distribution of Trichodesmium. Simple linear regression analysis would suggest no relationship between any of the sampled environmental variables and N2 fixation rates. However, considering the concentrations of iron and phosphorus together within a simplified resource-ratio framework, illustrated using an idealized numerical model, indicates the combined effects these nutrients have on Trichodesmium and broader diazotroph biogeography, alongside the reciprocal maintenance of different biogeographic provinces of the (sub)tropical Atlantic in states of Fe or P oligotrophy by diazotrophy. The qualitative principles of the resource-ratio framework are argued to be consistent with both the previously described North-South Atlantic contrast in Trichodesmium abundance and the presence and consequence of a substantial non-Trichodesmium diazotrophic community in the western South Atlantic subtropical gyre. A comprehensive, observation-based explanation of the interactions between Trichodesmium and the wider diazotrophic community with iron and phosphorus in the Atlantic Ocean is thus revealed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-23
    Description: Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1-2day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-23
    Description: Iron (Fe), cobalt (Co), and vitamin B12 addition experiments were performed in the eastern Equatorial Pacific/Peruvian upwelling zone during the 2015 El Niño event. Near the Peruvian coastline, apparent photosystem II photochemical efficiencies (Fv/Fm) were unchanged by nutrient addition and chlorophyll‐a tripled in untreated controls over two days, indicating nutrient replete conditions. Conversely, Fe amendment further away from the coastline in the high nitrate, low Fe zone significantly increased Fv/Fm and chlorophyll‐a concentrations. Mean chlorophyll‐a was further enhanced following supply of Fe+Co and Fe+B12 relative to Fe alone, but this was not statistically significant; further offshore, reported Co depletion relative to Fe could enhance responses. The persistence of Fe limitation in this system under a developing El Niño, as previously demonstrated under non‐El Niño conditions, suggests that diminished upwelled Fe is likely an important factor driving reductions in offshore phytoplankton productivity during these events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Upwelling ocean currents associated with oxygen minimum zones (OMZs) supply nutrients fuelling intense marine productivity. Perturbations in the extent and intensity of OMZs are projected in the future, but it is currently uncertain how this will impact fluxes of redox‐sensitive trace metal micronutrients to the surface ocean. Here we report seawater concentrations of Fe, Mn, Co, Cd, and Ni alongside the redox indicator iodide/iodate in the Peruvian OMZ during the 2015 El Niño event. The El Niño drove atypical upwelling of oxygen‐enriched water over the Peruvian Shelf, resulting in oxidized iodine and strongly depleted Fe (II), total dissolved Fe, and reactive particulate Fe concentrations relative to non‐El Niño conditions. Observations of Fe were matched by the redox‐sensitive micronutrients Co and Mn, but not by non‐redox‐sensitive Cd and Ni. These observations demonstrate that oxygenation of OMZs significantly reduces water column inventories of redox‐sensitive micronutrients, with potential impacts on ocean productivity. Plain Language Summary Some trace metals, including iron, are essential micronutrients for phytoplankton growth. However, the solubility of iron is very low under oxygenated conditions. Consequently, restricted iron availability in oxygen‐rich seawater can limit phytoplankton growth in the ocean, including in the Eastern Tropical South Pacific. Under typical conditions, depleted oxygen on the South American continental shelf is generally thought to enhance iron supply to the ocean, fuelling phytoplankton productivity in overlying waters. However, the impact of changes in oxygenation, which are predicted to occur in the future, are not known. The 2015 El Niño event led to unusually high oxygen on the Peruvian shelf, offering a system‐scale test on how oxygen influences seawater iron concentrations. We show that El Niño‐driven oxygenation resulted in marked decreases in iron and other metals sensitive to oxygen (cobalt and manganese), whilst metals not sensitive to oxygen (cadmium and nickel) were unaffected. The measured reductions in iron may have led to decreased phytoplankton productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlosser, Christian; Klar, Jessica K; Wake, Bronwyn D; Snow, Joseph T; Honey, David J; Woodward, E Malcolm S; Lohan, Maeve C; Achterberg, Eric Pieter; Moore, C Mark (2013): Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide. Proceedings of the National Academy of Sciences of the United States of America, direct submission, https://doi.org/10.1073/pnas.1318670111
    Publication Date: 2023-07-08
    Description: Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (~0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north-south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial-temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.
    Keywords: Aluminium, dissolved; Aluminium, dissolved, standard deviation; Atlantic; Brown & Bruland (2008); D361; D361-track; DEPTH, water; Discovery (1962); Fish; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Iron, dissolved; Iron, dissolved, standard deviation; LATITUDE; LONGITUDE; Obata et al. (1993); Phosphorus, inorganic, dissolved; Zhang & Chi (2002)
    Type: Dataset
    Format: text/tab-separated-values, 1217 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Löscher, Carolin R; Großkopf, Tobias; Desai, Falguni; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel MM; LaRoche, Julie; Schmitz, Ruth A (2014): Facets of diazotrophy in the oxygen minimum zone waters off Peru. The ISME Journal, https://doi.org/10.1038/ismej.2014.71
    Publication Date: 2023-10-28
    Description: Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2- and PO43- are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futur
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...