ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-25
    Description: We investigate clustering properties of quasars using a new version of our semi-analytic model of galaxy and quasar formation with state-of-the-art cosmological N -body simulations. In this study, we assume that a major merger of galaxies triggers cold gas accretion on to a supermassive black hole and quasar activity. Our model can reproduce the downsizing trend of the evolution of quasars. We find that the median mass of quasar host dark matter haloes increases with cosmic time by an order of magnitude from z  = 4 (a few 10 11 M ) to z  = 1 (a few 10 12 M ), and depends only weakly on the quasar luminosity. Deriving the quasar bias through the quasar–galaxy cross-correlation function in the model, we find that the quasar bias does not depend on the quasar luminosity, similar to observed trends. This result reflects the fact that quasars with a fixed luminosity have various Eddington ratios and thus have various host halo masses that primarily determine the quasar bias. We also show that the quasar bias increases with redshift, which is in qualitative agreement with observations. Our bias value is lower than the observed values at high redshifts, implying that we need some mechanisms that make quasars inactive in low-mass haloes and/or that make them more active in high-mass haloes.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-29
    Description: We have investigated effects of dust attenuation on quasar luminosity functions at z  ~ 2 using a semi-analytic galaxy formation model combined with a large cosmological N -body simulation. We estimate the dust attenuation of quasars self-consistently with that of galaxies by considering the dust in their host bulges. We find that the luminosity of the bright quasars is strongly dimmed by the dust attenuation, ~2 mag in the B -band. Assuming the empirical bolometric corrections for active galactic nuclei (AGNs) by Marconi et al., we find that this dust attenuation is too strong to explain the B -band and X-ray quasar luminosity functions simultaneously. We consider two possible mechanisms that weaken the dust attenuation. As such a mechanism, we introduce a time delay for AGN activity, that is, gas fuelling to a central black hole starts sometime after the beginning of the starburst induced by a major merger. The other is the anisotropy in the dust distribution. We find that in order to make the dust attenuation of the quasars negligible, either the gas accretion into the black holes has to be delayed at least three times the dynamical time-scale of their host bulges or the dust covering factor is as small as ~0.1.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...