ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (17)
  • ENERGY PRODUCTION AND CONVERSION
  • Nature Publishing Group (NPG)  (17)
  • 1
    Publication Date: 2010-04-23
    Description: The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-alpha and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC(50)) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log(10) reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Min -- Nettles, Richard E -- Belema, Makonen -- Snyder, Lawrence B -- Nguyen, Van N -- Fridell, Robert A -- Serrano-Wu, Michael H -- Langley, David R -- Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Lemm, Julie A -- Wang, Chunfu -- Knipe, Jay O -- Chien, Caly -- Colonno, Richard J -- Grasela, Dennis M -- Meanwell, Nicholas A -- Hamann, Lawrence G -- England -- Nature. 2010 May 6;465(7294):96-100. doi: 10.1038/nature08960. Epub 2010 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20410884" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Animals ; Antiviral Agents/blood/chemistry/*pharmacology/therapeutic use ; Cell Line ; Cercopithecus aethiops ; Drug Resistance, Viral ; Female ; Genotype ; HeLa Cells ; Hepacivirus/*drug effects ; Hepatitis C/drug therapy/virology ; Humans ; Imidazoles/blood/chemistry/*pharmacology ; Inhibitory Concentration 50 ; Male ; Middle Aged ; Time Factors ; Vero Cells ; Viral Load/drug effects ; Viral Nonstructural Proteins/*antagonists & inhibitors ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-24
    Description: Ca(2+) mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP(3)), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP(3) and cyclic ADP ribose cause the release of Ca(2+) from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP(3) and ryanodine receptors (InsP(3)Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca(2+) from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca(2+) release from lysosome-related stores that is subsequently amplified by Ca(2+)-induced Ca(2+) release by InsP(3)Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca(2+) stores or by blocking InsP(3)Rs. Thus, TPCs form NAADP receptors that release Ca(2+) from acidic organelles, which can trigger further Ca(2+) signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca(2+) signals in animal cells, and will advance our understanding of the physiological role of NAADP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761823/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761823/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calcraft, Peter J -- Ruas, Margarida -- Pan, Zui -- Cheng, Xiaotong -- Arredouani, Abdelilah -- Hao, Xuemei -- Tang, Jisen -- Rietdorf, Katja -- Teboul, Lydia -- Chuang, Kai-Ting -- Lin, Peihui -- Xiao, Rui -- Wang, Chunbo -- Zhu, Yingmin -- Lin, Yakang -- Wyatt, Christopher N -- Parrington, John -- Ma, Jianjie -- Evans, A Mark -- Galione, Antony -- Zhu, Michael X -- 070772/Wellcome Trust/United Kingdom -- FS/05/050/British Heart Foundation/United Kingdom -- P30 NS045758/NS/NINDS NIH HHS/ -- P30 NS045758-05/NS/NINDS NIH HHS/ -- P30 NS045758-059003/NS/NINDS NIH HHS/ -- P30-NS045758/NS/NINDS NIH HHS/ -- R01 DK081654/DK/NIDDK NIH HHS/ -- R01 DK081654-01A1/DK/NIDDK NIH HHS/ -- R01 NS042183/NS/NINDS NIH HHS/ -- R01 NS042183-04/NS/NINDS NIH HHS/ -- R21 NS056942/NS/NINDS NIH HHS/ -- R21 NS056942-01/NS/NINDS NIH HHS/ -- England -- Nature. 2009 May 28;459(7246):596-600. doi: 10.1038/nature08030. Epub 2009 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19387438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/genetics/*metabolism ; *Calcium Signaling/drug effects ; Cell Line ; Chickens ; Humans ; Hydrogen-Ion Concentration ; Insulin-Secreting Cells/drug effects/metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; NADP/*analogs & derivatives/metabolism/pharmacology ; Organelles/drug effects/*metabolism ; Protein Binding
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-19
    Description: Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weerapana, Eranthie -- Wang, Chu -- Simon, Gabriel M -- Richter, Florian -- Khare, Sagar -- Dillon, Myles B D -- Bachovchin, Daniel A -- Mowen, Kerri -- Baker, David -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- MH084512/MH/NIMH NIH HHS/ -- R01 CA087660/CA/NCI NIH HHS/ -- R01 CA087660-09/CA/NCI NIH HHS/ -- R01 GM085117/GM/NIGMS NIH HHS/ -- R01 GM090294/GM/NIGMS NIH HHS/ -- R01 GM090294-02/GM/NIGMS NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- R37 CA087660-10/CA/NCI NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-030004/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):790-5. doi: 10.1038/nature09472. Epub 2010 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085121" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Cell Line, Tumor ; Conserved Sequence ; Cysteine/analysis/*metabolism ; Humans ; Hydrolases/chemistry/metabolism ; Iron-Sulfur Proteins/biosynthesis ; Liver/metabolism ; Mice ; Myocardium/metabolism ; Nuclear Proteins/chemistry/metabolism ; Oxidation-Reduction ; Protein Engineering ; Protein Hydrolysates ; Protein-Arginine N-Methyltransferases/chemistry/metabolism ; Proteins/*chemistry/*metabolism ; Proteome/*chemistry/*metabolism ; Proteomics/methods ; Repressor Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-20
    Description: Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IkappaBzeta, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IkappaBzeta at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qian -- Zhao, Kai -- Shen, Qicong -- Han, Yanmei -- Gu, Yan -- Li, Xia -- Zhao, Dezhi -- Liu, Yiqi -- Wang, Chunmei -- Zhang, Xiang -- Su, Xiaoping -- Liu, Juan -- Ge, Wei -- Levine, Ross L -- Li, Nan -- Cao, Xuetao -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA173636/CA/NCI NIH HHS/ -- England -- Nature. 2015 Sep 17;525(7569):389-93. doi: 10.1038/nature15252. Epub 2015 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Molecular Biology &Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China. ; National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai 200433, China. ; Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26287468" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Chromatin/chemistry/genetics/metabolism ; Colitis/enzymology/immunology/metabolism ; DNA Methylation ; DNA-Binding Proteins/deficiency/*metabolism ; Dendritic Cells/cytology/metabolism ; Down-Regulation/genetics ; Epigenesis, Genetic ; Female ; HEK293 Cells ; Histone Deacetylase 2/*metabolism ; Histones/chemistry/metabolism ; Humans ; I-kappa B Proteins/metabolism ; Inflammation/enzymology/immunology/*metabolism ; Interleukin-6/*antagonists & inhibitors/*biosynthesis/genetics/immunology ; Macrophages/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins/deficiency/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-01-21
    Description: Many tumours are composed of genetically diverse cells; however, little is known about how diversity evolves or the impact that diversity has on functional properties. Here, using xenografting and DNA copy number alteration (CNA) profiling of human BCR-ABL1 lymphoblastic leukaemia, we demonstrate that genetic diversity occurs in functionally defined leukaemia-initiating cells and that many diagnostic patient samples contain multiple genetically distinct leukaemia-initiating cell subclones. Reconstructing the subclonal genetic ancestry of several samples by CNA profiling demonstrated a branching multi-clonal evolution model of leukaemogenesis, rather than linear succession. For some patient samples, the predominant diagnostic clone repopulated xenografts, whereas in others it was outcompeted by minor subclones. Reconstitution with the predominant diagnosis clone was associated with more aggressive growth properties in xenografts, deletion of CDKN2A and CDKN2B, and a trend towards poorer patient outcome. Our findings link clonal diversity with leukaemia-initiating-cell function and underscore the importance of developing therapies that eradicate all intratumoral subclones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Notta, Faiyaz -- Mullighan, Charles G -- Wang, Jean C Y -- Poeppl, Armando -- Doulatov, Sergei -- Phillips, Letha A -- Ma, Jing -- Minden, Mark D -- Downing, James R -- Dick, John E -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2011 Jan 20;469(7330):362-7. doi: 10.1038/nature09733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, Ontario M5G 1L7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21248843" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival ; Clone Cells/*metabolism/*pathology ; Cyclin-Dependent Kinase Inhibitor p15/deficiency/genetics ; DNA Copy Number Variations/genetics ; Disease Progression ; *Evolution, Molecular ; Fusion Proteins, bcr-abl/*genetics ; Genes, p16 ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Models, Biological ; Neoplasm Transplantation ; Oligonucleotide Array Sequence Analysis ; Philadelphia Chromosome ; Polymorphism, Single Nucleotide/genetics ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/*genetics/*pathology ; Survival Rate ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-12-24
    Description: In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of 'starter' cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073090/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073090/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyamichi, Kazunari -- Amat, Fernando -- Moussavi, Farshid -- Wang, Chen -- Wickersham, Ian -- Wall, Nicholas R -- Taniguchi, Hiroki -- Tasic, Bosiljka -- Huang, Z Josh -- He, Zhigang -- Callaway, Edward M -- Horowitz, Mark A -- Luo, Liqun -- R01 MH063912/MH/NIMH NIH HHS/ -- R01 NS050835/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 14;472(7342):191-6. doi: 10.1038/nature09714. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HHMI/Department of Biology, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179085" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/anatomy & histology/cytology/physiology ; Animals ; Axons/physiology ; Bias (Epidemiology) ; Brain Mapping ; HEK293 Cells ; Humans ; Mice ; Mice, Transgenic ; *Neuroanatomical Tract-Tracing Techniques ; Odors/analysis ; Olfactory Bulb/anatomy & histology/cytology/physiology ; Olfactory Pathways/anatomy & histology/*cytology/*physiology ; Olfactory Perception/genetics/*physiology ; Olfactory Receptor Neurons/cytology/physiology ; Rabies virus/physiology ; Synapses/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-05
    Description: Non-mammalian vertebrates have an intrinsically photosensitive iris and thus a local pupillary light reflex (PLR). In contrast, it is thought that the PLR in mammals generally requires neuronal circuitry connecting the eye and the brain. Here we report that an intrinsic component of the PLR is in fact widespread in nocturnal and crepuscular mammals. In mouse, this intrinsic PLR requires the visual pigment melanopsin; it also requires PLCbeta4, a vertebrate homologue of the Drosophila NorpA phospholipase C which mediates rhabdomeric phototransduction. The Plcb4(-/-) genotype, in addition to removing the intrinsic PLR, also essentially eliminates the intrinsic light response of the M1 subtype of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (M1-ipRGCs), which are by far the most photosensitive ipRGC subtype and also have the largest response to light. Ablating in mouse the expression of both TRPC6 and TRPC7, members of the TRP channel superfamily, also essentially eliminated the M1-ipRGC light response but the intrinsic PLR was not affected. Thus, melanopsin signalling exists in both iris and retina, involving a PLCbeta4-mediated pathway that nonetheless diverges in the two locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, T -- Do, M T H -- Riccio, A -- Jiang, Z -- Hsieh, J -- Wang, H C -- Merbs, S L -- Welsbie, D S -- Yoshioka, T -- Weissgerber, P -- Stolz, S -- Flockerzi, V -- Freichel, M -- Simon, M I -- Clapham, D E -- Yau, K-W -- EY14596/EY/NEI NIH HHS/ -- R01 DC006904/DC/NIDCD NIH HHS/ -- R01 DC006904-07/DC/NIDCD NIH HHS/ -- R01 DC006904-08/DC/NIDCD NIH HHS/ -- R01 DC006904-09/DC/NIDCD NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY006837-22/EY/NEI NIH HHS/ -- R01 EY006837-23/EY/NEI NIH HHS/ -- R01 EY006837-24/EY/NEI NIH HHS/ -- R37 EY006837/EY/NEI NIH HHS/ -- R37 EY006837-13/EY/NEI NIH HHS/ -- R37 EY006837-14/EY/NEI NIH HHS/ -- R37 EY006837-15/EY/NEI NIH HHS/ -- R37 EY006837-15S1/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Nov 2;479(7371):67-73. doi: 10.1038/nature10567.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. txue77@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22051675" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Iris/anatomy & histology/cytology/*metabolism/*radiation effects ; Light Signal Transduction/physiology/*radiation effects ; Mammals/*physiology ; Mice ; Phospholipase C beta/metabolism ; Photic Stimulation ; Primates/physiology ; Reflex, Pupillary/physiology/radiation effects ; Retina/cytology/*metabolism/*radiation effects ; Retinal Ganglion Cells/metabolism/radiation effects ; Rod Opsins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-14
    Description: In acute myeloid leukaemia (AML), the cell of origin, nature and biological consequences of initiating lesions, and order of subsequent mutations remain poorly understood, as AML is typically diagnosed without observation of a pre-leukaemic phase. Here, highly purified haematopoietic stem cells (HSCs), progenitor and mature cell fractions from the blood of AML patients were found to contain recurrent DNMT3A mutations (DNMT3A(mut)) at high allele frequency, but without coincident NPM1 mutations (NPM1c) present in AML blasts. DNMT3A(mut)-bearing HSCs showed a multilineage repopulation advantage over non-mutated HSCs in xenografts, establishing their identity as pre-leukaemic HSCs. Pre-leukaemic HSCs were found in remission samples, indicating that they survive chemotherapy. Therefore DNMT3A(mut) arises early in AML evolution, probably in HSCs, leading to a clonally expanded pool of pre-leukaemic HSCs from which AML evolves. Our findings provide a paradigm for the detection and treatment of pre-leukaemic clones before the acquisition of additional genetic lesions engenders greater therapeutic resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shlush, Liran I -- Zandi, Sasan -- Mitchell, Amanda -- Chen, Weihsu Claire -- Brandwein, Joseph M -- Gupta, Vikas -- Kennedy, James A -- Schimmer, Aaron D -- Schuh, Andre C -- Yee, Karen W -- McLeod, Jessica L -- Doedens, Monica -- Medeiros, Jessie J F -- Marke, Rene -- Kim, Hyeoung Joon -- Lee, Kwon -- McPherson, John D -- Hudson, Thomas J -- HALT Pan-Leukemia Gene Panel Consortium -- Brown, Andrew M K -- Yousif, Fouad -- Trinh, Quang M -- Stein, Lincoln D -- Minden, Mark D -- Wang, Jean C Y -- Dick, John E -- CSC-105367/Canadian Institutes of Health Research/Canada -- R21 CA152613/CA/NCI NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):328-33. doi: 10.1038/nature13038. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2]. ; Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Department of Medicine, University of Toronto, Toronto, Ontario M5S 2J7, Canada [3] Division of Medical Oncology and Hematology, UHN, Toronto, Ontario M5G 2M9, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Department of Medicine, University of Toronto, Toronto, Ontario M5S 2J7, Canada [3] Division of Medical Oncology and Hematology, UHN, Toronto, Ontario M5G 2M9, Canada [4] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Radboud University, Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands. ; Chonnam National University Hwasun Hospital, Genome Research Center for Hematopoietic Diseases, Gwangju 519-809, South Korea. ; 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. ; 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. ; 1] Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Clone Cells/cytology/metabolism/pathology ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; Drug Resistance, Neoplasm/drug effects ; Female ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/drug effects/metabolism/pathology ; Heterografts ; Humans ; Isocitrate Dehydrogenase/genetics ; Leukemia, Myeloid, Acute/diagnosis/drug therapy/genetics/*pathology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mutation/genetics ; Neoplasm Transplantation ; Neoplastic Stem Cells/*cytology/drug effects/metabolism/pathology ; Nuclear Proteins/genetics ; Remission Induction ; T-Lymphocytes/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-11
    Description: In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kraus, Daniel -- Yang, Qin -- Kong, Dong -- Banks, Alexander S -- Zhang, Lin -- Rodgers, Joseph T -- Pirinen, Eija -- Pulinilkunnil, Thomas C -- Gong, Fengying -- Wang, Ya-chin -- Cen, Yana -- Sauve, Anthony A -- Asara, John M -- Peroni, Odile D -- Monia, Brett P -- Bhanot, Sanjay -- Alhonen, Leena -- Puigserver, Pere -- Kahn, Barbara B -- K01 DK094943/DK/NIDDK NIH HHS/ -- K08 DK090149/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK0460200/DK/NIDDK NIH HHS/ -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P30 DK57521/DK/NIDDK NIH HHS/ -- P30CA006516-46/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK100385/DK/NIDDK NIH HHS/ -- R01 DK69966/DK/NIDDK NIH HHS/ -- R37 DK043051/DK/NIDDK NIH HHS/ -- R37 DK43051/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):258-62. doi: 10.1038/nature13198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] [3] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; 1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, Massachusetts 02215, USA. ; Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California 92008-7326, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717514" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Adipocytes/metabolism/secretion ; Adipose Tissue/enzymology/metabolism ; Adipose Tissue, White/enzymology/metabolism ; Animals ; Diabetes Mellitus, Type 2/enzymology/metabolism ; *Diet ; Energy Metabolism ; Fatty Liver ; Gene Knockdown Techniques ; Glucose Intolerance ; Glucose Transporter Type 4/deficiency/genetics/metabolism ; Insulin Resistance ; Liver/enzymology ; Male ; Mice ; Mice, Inbred C57BL ; NAD/metabolism ; Niacinamide/metabolism ; Nicotinamide N-Methyltransferase/*deficiency/genetics/*metabolism ; Obesity/*enzymology/etiology/genetics/*prevention & control ; Ornithine Decarboxylase/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/metabolism ; S-Adenosylmethionine/metabolism ; Sirtuin 1/metabolism ; Spermine/analogs & derivatives/metabolism ; Thinness/enzymology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-05
    Description: It is estimated that more than 170 million people are infected with hepatitis C virus (HCV) worldwide. Clinical trials have demonstrated that, for the first time in human history, the potential exists to eradicate a chronic viral disease using combination therapies that contain only direct-acting antiviral agents. HCV non-structural protein 5A (NS5A) is a multifunctional protein required for several stages of the virus replication cycle. NS5A replication complex inhibitors, exemplified by daclatasvir (DCV; also known as BMS-790052 and Daklinza), belong to the most potent class of direct-acting anti-HCV agents described so far, with in vitro activity in the picomolar (pM) to low nanomolar (nM) range. The potency observed in vitro has translated into clinical efficacy, with HCV RNA declining by ~3-4 log10 in infected patients after administration of single oral doses of DCV. Understanding the exceptional potency of DCV was a key objective of this study. Here we show that although DCV and an NS5A inhibitor analogue (Syn-395) are inactive against certain NS5A resistance variants, combinations of the pair enhance DCV potency by 〉1,000-fold, restoring activity to the pM range. This synergistic effect was validated in vivo using an HCV-infected chimaeric mouse model. The cooperative interaction of a pair of compounds suggests that NS5A protein molecules communicate with each other: one inhibitor binds to resistant NS5A, causing a conformational change that is transmitted to adjacent NS5As, resensitizing resistant NS5A so that the second inhibitor can act to restore inhibition. This unprecedented synergistic anti-HCV activity also enhances the resistance barrier of DCV, providing additional options for HCV combination therapy and new insight into the role of NS5A in the HCV replication cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Jin-Hua -- O'Boyle, Donald R 2nd -- Fridell, Robert A -- Langley, David R -- Wang, Chunfu -- Roberts, Susan B -- Nower, Peter -- Johnson, Benjamin M -- Moulin, Frederic -- Nophsker, Michelle J -- Wang, Ying-Kai -- Liu, Mengping -- Rigat, Karen -- Tu, Yong -- Hewawasam, Piyasena -- Kadow, John -- Meanwell, Nicholas A -- Cockett, Mark -- Lemm, Julie A -- Kramer, Melissa -- Belema, Makonen -- Gao, Min -- England -- Nature. 2015 Nov 12;527(7577):245-8. doi: 10.1038/nature15711. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Leads Discovery and Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA. ; Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536115" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Animals ; Antiviral Agents/*pharmacology ; Biphenyl Compounds/*pharmacology ; Cell Line ; Drug Resistance, Viral/*drug effects ; Drug Synergism ; Drug Therapy, Combination ; Hepacivirus/*drug effects/*genetics/metabolism ; Hepatitis C/virology ; Hepatocytes/transplantation ; Humans ; Imidazoles/*pharmacology ; Mice ; Models, Molecular ; Protein Conformation/drug effects ; Protein Multimerization/drug effects ; Protein Structure, Quaternary/drug effects ; Reproducibility of Results ; Viral Nonstructural Proteins/chemistry/genetics/*metabolism ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...