ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (4)
  • Nature Publishing Group (NPG)  (4)
  • Oxford University Press
  • 1
    Publication Date: 2013-10-25
    Description: Mutations in SHANK3 and large duplications of the region spanning SHANK3 both cause a spectrum of neuropsychiatric disorders, indicating that proper SHANK3 dosage is critical for normal brain function. However, SHANK3 overexpression per se has not been established as a cause of human disorders because 22q13 duplications involve several genes. Here we report that Shank3 transgenic mice modelling a human SHANK3 duplication exhibit manic-like behaviour and seizures consistent with synaptic excitatory/inhibitory imbalance. We also identified two patients with hyperkinetic disorders carrying the smallest SHANK3-spanning duplications reported so far. These findings indicate that SHANK3 overexpression causes a hyperkinetic neuropsychiatric disorder. To probe the mechanism underlying the phenotype, we generated a Shank3 in vivo interactome and found that Shank3 directly interacts with the Arp2/3 complex to increase F-actin levels in Shank3 transgenic mice. The mood-stabilizing drug valproate, but not lithium, rescues the manic-like behaviour of Shank3 transgenic mice raising the possibility that this hyperkinetic disorder has a unique pharmacogenetic profile.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Kihoon -- Holder, J Lloyd Jr -- Schaaf, Christian P -- Lu, Hui -- Chen, Hongmei -- Kang, Hyojin -- Tang, Jianrong -- Wu, Zhenyu -- Hao, Shuang -- Cheung, Sau Wai -- Yu, Peng -- Sun, Hao -- Breman, Amy M -- Patel, Ankita -- Lu, Hui-Chen -- Zoghbi, Huda Y -- 1R01NS070302/NS/NINDS NIH HHS/ -- 2T32NS043124/NS/NINDS NIH HHS/ -- P30HD024064/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 7;503(7474):72-7. doi: 10.1038/nature12630. Epub 2013 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA [3] Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153177" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/metabolism ; Actins/metabolism ; Adult ; Animals ; Behavior, Animal ; Bipolar Disorder/*drug therapy/genetics/*physiopathology ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Excitatory Postsynaptic Potentials ; Female ; Gene Dosage/genetics ; Gene Expression/genetics ; Genes, Duplicate/genetics ; Humans ; Hyperkinesis/genetics/physiopathology ; Inhibitory Postsynaptic Potentials ; Lithium/pharmacology ; Male ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins/*genetics/*metabolism ; Seizures/genetics ; Valproic Acid/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-31
    Description: Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jeehye -- Al-Ramahi, Ismael -- Tan, Qiumin -- Mollema, Nissa -- Diaz-Garcia, Javier R -- Gallego-Flores, Tatiana -- Lu, Hsiang-Chih -- Lagalwar, Sarita -- Duvick, Lisa -- Kang, Hyojin -- Lee, Yoontae -- Jafar-Nejad, Paymaan -- Sayegh, Layal S -- Richman, Ronald -- Liu, Xiuyun -- Gao, Yan -- Shaw, Chad A -- Arthur, J Simon C -- Orr, Harry T -- Westbrook, Thomas F -- Botas, Juan -- Zoghbi, Huda Y -- HD024064/HD/NICHD NIH HHS/ -- MC_U127081014/Medical Research Council/United Kingdom -- NS42179/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 NS027699/NS/NINDS NIH HHS/ -- R01 NS042179/NS/NINDS NIH HHS/ -- T32 GM007526/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jun 20;498(7454):325-31. doi: 10.1038/nature12204. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719381" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Ataxin-1 ; Ataxins ; Cell Line, Tumor ; Disease Models, Animal ; Down-Regulation/drug effects ; Drosophila melanogaster/genetics/*metabolism ; Female ; Humans ; MAP Kinase Signaling System/drug effects ; Male ; Mice ; Mitogen-Activated Protein Kinases/*metabolism ; Molecular Sequence Data ; Molecular Targeted Therapy ; Nerve Tissue Proteins/chemistry/genetics/*metabolism/*toxicity ; Nuclear Proteins/chemistry/genetics/*metabolism/*toxicity ; Phosphorylation ; Protein Stability/drug effects ; Ribosomal Protein S6 Kinases, 90-kDa/deficiency/genetics/*metabolism ; Spinocerebellar Ataxias/*metabolism/*pathology ; Transgenes ; ras Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-23
    Description: To correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon aromatase inhibitor treatment. Pathway analysis demonstrated that mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in oestrogen-receptor-positive breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumour biology, but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ellis, Matthew J -- Ding, Li -- Shen, Dong -- Luo, Jingqin -- Suman, Vera J -- Wallis, John W -- Van Tine, Brian A -- Hoog, Jeremy -- Goiffon, Reece J -- Goldstein, Theodore C -- Ng, Sam -- Lin, Li -- Crowder, Robert -- Snider, Jacqueline -- Ballman, Karla -- Weber, Jason -- Chen, Ken -- Koboldt, Daniel C -- Kandoth, Cyriac -- Schierding, William S -- McMichael, Joshua F -- Miller, Christopher A -- Lu, Charles -- Harris, Christopher C -- McLellan, Michael D -- Wendl, Michael C -- DeSchryver, Katherine -- Allred, D Craig -- Esserman, Laura -- Unzeitig, Gary -- Margenthaler, Julie -- Babiera, G V -- Marcom, P Kelly -- Guenther, J M -- Leitch, Marilyn -- Hunt, Kelly -- Olson, John -- Tao, Yu -- Maher, Christopher A -- Fulton, Lucinda L -- Fulton, Robert S -- Harrison, Michelle -- Oberkfell, Ben -- Du, Feiyu -- Demeter, Ryan -- Vickery, Tammi L -- Elhammali, Adnan -- Piwnica-Worms, Helen -- McDonald, Sandra -- Watson, Mark -- Dooling, David J -- Ota, David -- Chang, Li-Wei -- Bose, Ron -- Ley, Timothy J -- Piwnica-Worms, David -- Stuart, Joshua M -- Wilson, Richard K -- Mardis, Elaine R -- 3P50 CA68438/CA/NCI NIH HHS/ -- P30 CA091842/CA/NCI NIH HHS/ -- P30 CA091842-01/CA/NCI NIH HHS/ -- P50 CA068438/CA/NCI NIH HHS/ -- P50 CA068438-05/CA/NCI NIH HHS/ -- P50 CA094056/CA/NCI NIH HHS/ -- P50 CA094056-10/CA/NCI NIH HHS/ -- P50 CA94056/CA/NCI NIH HHS/ -- R01 CA095614/CA/NCI NIH HHS/ -- R01 CA095614-01A1/CA/NCI NIH HHS/ -- U01 CA114722/CA/NCI NIH HHS/ -- U01 CA114722-01/CA/NCI NIH HHS/ -- U10 CA076001/CA/NCI NIH HHS/ -- U10 CA076001-13/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-04/HG/NHGRI NIH HHS/ -- U54HG003079/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 10;486(7403):353-60. doi: 10.1038/nature11143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Division of Oncology, Washington University, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722193" target="_blank"〉PubMed〈/a〉
    Keywords: Androstadienes/pharmacology/therapeutic use ; Antineoplastic Agents/pharmacology/therapeutic use ; Aromatase/*metabolism ; Aromatase Inhibitors/*therapeutic use ; Breast Neoplasms/*drug therapy/*genetics/metabolism/pathology ; DNA Repair ; Exome/genetics ; Exons/genetics ; Female ; Genetic Variation/genetics ; Genome, Human/*genetics ; Humans ; MAP Kinase Kinase 4/genetics ; MAP Kinase Kinase Kinase 1/genetics ; Mutation/genetics ; Nitriles/pharmacology/therapeutic use ; Receptors, Estrogen/metabolism ; Treatment Outcome ; Triazoles/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-21
    Description: Members of the nuclear factor-kappaB (NF-kappaB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-kappaB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-kappaB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-kappaB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-kappaB target genes, and rapidly transformed neural stem cells--the cell of origin of ependymoma--to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Matthew -- Mohankumar, Kumarasamypet M -- Punchihewa, Chandanamali -- Weinlich, Ricardo -- Dalton, James D -- Li, Yongjin -- Lee, Ryan -- Tatevossian, Ruth G -- Phoenix, Timothy N -- Thiruvenkatam, Radhika -- White, Elsie -- Tang, Bo -- Orisme, Wilda -- Gupta, Kirti -- Rusch, Michael -- Chen, Xiang -- Li, Yuxin -- Nagahawhatte, Panduka -- Hedlund, Erin -- Finkelstein, David -- Wu, Gang -- Shurtleff, Sheila -- Easton, John -- Boggs, Kristy -- Yergeau, Donald -- Vadodaria, Bhavin -- Mulder, Heather L -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Ma, Jing -- Song, Guangchun -- Gajjar, Amar -- Merchant, Thomas -- Boop, Frederick -- Smith, Amy A -- Ding, Li -- Lu, Charles -- Ochoa, Kerri -- Zhao, David -- Fulton, Robert S -- Fulton, Lucinda L -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Green, Douglas R -- Zhang, Jinghui -- Ellison, David W -- Gilbertson, Richard J -- P01 CA096832/CA/NCI NIH HHS/ -- P01CA96832/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):451-5. doi: 10.1038/nature13109. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [3]. ; 1] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2]. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA [2] Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA. ; Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; MD Anderson Cancer Center Orlando, Pediatric Hematology/Oncology, 92 West Miller MP 318, Orlando, Florida 32806, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [3] Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] The Genome Institute, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [3] Department of Genetics, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA [4] Siteman Cancer Center, Washington University School of Medicine in St Louis, St Louis, Missouri 63108, USA. ; Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, Memphis, Tennessee 38105, USA [2] Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553141" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Base Sequence ; Brain Neoplasms/genetics/metabolism/pathology ; Cell Line ; Cell Nucleus/metabolism ; *Cell Transformation, Neoplastic/genetics ; Chromosomes, Human, Pair 11/genetics ; Ependymoma/*genetics/*metabolism/pathology ; Female ; Humans ; Mice ; Models, Genetic ; Molecular Sequence Data ; NF-kappa B/genetics/*metabolism ; Neural Stem Cells/metabolism/pathology ; Oncogene Proteins, Fusion/genetics/metabolism ; Phosphoproteins/genetics/metabolism ; Proteins/genetics/*metabolism ; *Signal Transduction ; Transcription Factor RelA/genetics/*metabolism ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...