ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Progress In Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 185, ISSN: 0079-6611
    Publication Date: 2020-06-05
    Description: The Southern Ocean near the Western Antarctic Peninsula (WAP) is strongly affected by climate change resulting in warmer air temperature, accompanied with reduced sea ice coverage, increased sea water temperature and potential changes in the abundances of two key grazer species Salpa thompsoni (salp) and Euphausia superba (Antarctic krill). While salp abundance is hypothesized to increase, krill abundance is hypothesized to decline with dramatic consequences for the entire food web of the Southern Ocean. A better understanding of the biotic interaction between krill and salps and their population dynamics is thus crucial. However, the life cycle of salps is complicated and barely understood. Therefore, we have developed an individual-based model describing the whole life cycle to better understand the population dynamics of salps and the conditions for blooms. The model has been used to explore if and under what conditions the empirical pattern of large variability in observed salp abundances at the WAP, generated by the long-term data of the US Antarctic Marine Living Resources Program (AMLR) can emerge from a small seeding population. The model reproduced this empirical pattern if daily growth rates of oozoids were higher than previously reported for the WAP (mean growth rate for oozoids ~ 1 mm d−1) and if growth rates of blastozooids were lower (mean growth rate ~ 0.2 mm d−1). The model suggests that a prerequisite for local salp blooms requires a small founding population in early spring. With climate change it has been suggested that more frequent and earlier transport of salps into the WAP or winter survival will occur. Hence, the risk of salp blooms in the WAP is likely to substantially increase. These findings highlight the importance for an improved quantitative understanding of how primary production and the southward advection of salps will be impacted by climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part II-Topical Studies in Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, (131), pp. 1-6, ISSN: 0967-0645
    Publication Date: 2016-11-07
    Description: This editorial introduces a suite of articles resulting from the second Sea Ice Physics and Ecosystems eXperiment(SIPEX-2) voyage by presenting some background information on the study areaandAntarcticsea-ice conditions,and summarising the key findings from the project.Using the Australian iceb reaker RV Aurora Australis, SIPEX-2 was conducted in the area between 115–125°E and 62–66°S off East Antarctica during September to November 2012. This region had been sampled during two previous experiments,i.e. ARISE in 2003 (Massom etal.,2006a) and SIPEX in 2007(Worbyetal.,2011a). The 2012 voyage combined traditional and newly developed sampling methods with satellite and other data to measure sea-ice physical properties and pro- cesses on large scales,which provided context for bio geochemical and ecological case studies. Thes pecific goals of the SIPEX-2 project were to:(i)measure the spatial variability in sea-ice and snow-cover properties over small-to regional-length scales;(ii) improve understanding of sea-ice kinematic processes;and(iii) advance knowledge of the links between sea-ice physical characteristics,sea-ice biogeochemical cycling and ice-associated food-web dynamics.Our field-based activities were designed to inform modelling approaches and to improve our capability to assess impacts of predicted changes in Antarctic sea ice on Southern Ocean biogeochemical cycles and ecosystem function.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-20
    Description: The krill species Euphausia superba plays a critical role in the food chain of the Antarctic ecosystem. Significant changes in climate conditions observed in the Antarctic Peninsula region in the last decades have already altered the distribution of krill and its reproductive dynamics. A deeper understanding of the adaptation capabilities of this species is urgently needed. The availability of a large body of RNA-seq assays allowed us to extend the current knowledge of the krill transcriptome. Our study covered the entire developmental process providing information of central relevance for ecological studies. Here we identified a series of genes involved in different steps of the krill moulting cycle, in the reproductive process and in sexual maturation in accordance with what was already described in previous works. Furthermore, the new transcriptome highlighted the presence of differentially expressed genes previously unknown, playing important roles in cuticle development as well as in energy storage during the krill life cycle. The discovery of new opsin sequences, specifically rhabdomeric opsins, one onychopsin, and one non-visual arthropsin, expands our knowledge of the krill opsin repertoire. We have collected all these results into the KrillDB2 database, a resource combining the latest annotation of the krill transcriptome with a series of analyses targeting genes relevant to krill physiology. KrillDB2 provides in a single resource a comprehensive catalog of krill genes; an atlas of their expression profiles over all RNA-seq datasets publicly available; a study of differential expression across multiple conditions. Finally, it provides initial indications about the expression of microRNA precursors, whose contribution to krill physiology has never been reported before.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-20
    Description: Fin whales (Balaenoptera physalus quoyi) of the Southern Hemisphere were brought to near extinction by twentieth century industrial whaling. For decades, they had all but disappeared from previously highly frequented feeding grounds in Antarctic waters. Our dedicated surveys now confirm their return to ancestral feeding grounds, gathering at the Antarctic Peninsula in large aggregations to feed. We report on the results of an abundance survey and present the first scientific documentation of large fin whale feeding aggregations at Elephant Island, Antarctica, including the first ever video documentation. We interpret high densities, re-establishment of historical behaviours and the return to ancestral feeding grounds as signs for a recovering population. Recovery of a large whale population has the potential to augment primary productivity at their feeding grounds through the effects of nutrient recycling, known as 'the whale pump'. The recovery of fin whales in that area could thus restore ecosystem functions crucial for atmospheric carbon regulation in the world's most important ocean region for the uptake of anthropogenic CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...